Skip to main content
Log in

Element loss on rain forest conversion in East Amazonia: comparison of balances of stores and fluxes

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

Nutrient loss from forest ecosystems by burning and leaching can be estimated by comparing nutrient stores before and after the disturbance, and by measuring the nutrient fluxes during disturbance. We applied both methods to a clear cutting experiment near Belem, Eastern Amazon, in a correct time series of 15 months duration. Nutrient flux measurements include wood export, loss to the atmosphere by burning, and leaching. The latter was based on water flux simulation with a soil water model, and on element analysis of soil water extracts (ceramic cup lysimeter). Two plots with 33 and 92 t ha−1 of residual biomass (left after export of wood >7 cm diameter) were compared with a forest control plot. Store and flux balances agreed well in case of Na, K, Mg, and S, and partially also for Ca and total P. Deviations seem to be caused by erratic but statistically not significant variations of the soil stores (mainly C and total N). Spacial variability of soil parameters demand very high sample replication, especially after disturbance. Flux measurements are better but more costly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anurugsa B. 1998. Experimentelle Untersuchungen und Modellierung bodenchemischer Reaktionen in ferrallitischen Böden unter Bedingungen traditioneller Feldumlagewirtschaft. Ph.D. Thesis, University of Göttingen, Germany.

    Google Scholar 

  • Beven K.J. 1993. Prophecy, reality and uncertainty in distributed hydrological modelling. Adv. Water Resour. 16: 41–51.

    Google Scholar 

  • Brinkmann W.L.F. and Nascimento J.C.D. 1973. The effect of slash and burn agriculture on plant nutrients in the tertiary region of Central Amazonia. Turrialba 23(3): 284–290.

    Google Scholar 

  • Brouwer L.C. 1996. Nutrient Cycling in Pristine and Logged Tropical Rain Forests. A Study in Guyana. Tropenbos Guyana Series 1, Wageningen.

  • Bruijnzeel L.A. 1990. Hydrology of moist tropical forests and effects of conversion: a state of knowledge review. UNESCO International Hydrological Programme, Paris.

    Google Scholar 

  • Bruijnzeel L.A. and Wiersum K.F. 1985. A nutrient balance sheet for Agathis dammara Warb.: plantation forest under various management conditions in Central Java, Indonesia. For. Ecol. Manage. 10: 195–208.

    Google Scholar 

  • DENPASA (Dende do Para S/A) 1995. Climatologia Ano 1968/1995, Belem, Brazil.

  • Eden M.J., Furley P.A., McGregor D.F.M., Milliken W. and Ratter J.A. 1991. Effect of forest clearance and burning on soil properties in northern Roraima, Brazil. For. Ecol. Manage. 38(34): 282–290.

    Google Scholar 

  • EMBRAPA 1988. Boletim Agrometeorológico 1974–1988 EMBRAPA CPATU, Belém Pará, Brazil.

  • Fearnside P.M. 1990. Fire in the tropical rainforest of the Amazon basin. In: Goldammer J.G. (ed) Fire in the Tropical Biota. Springer, Berlin, Heidelberg, Ecological Studies 84: 106–116.

    Google Scholar 

  • Feddes R.A., Kowalik P. and Zaradry H. 1978. Simulation of Field Water Use and Crop Yield. Centre for Agricultural Publishing and Documentation, Wageningen, The Netherlands.

    Google Scholar 

  • Fölster H. and Khanna P.K. 1997. Dynamics of nutrient supply in plantation soils. In: Nambiar E.K.S. and Brown A. (eds) Management of Soil, Water and Nutrients in Tropical Plantation Forests; ACIAR Monograph No. 43.

  • Fölster H., De las Salas G. and Khanna P. 1976. A tropical evergreen forest site with perched water table, Magdalena valley, Columbia. Biomass and bioelement inventory of primary and secondary vegetation. Oecol. Plant. 11(4): 297–320.

    Google Scholar 

  • Hase H. and Fölster H. 1983. Impact of plantation forestry with teak (Tectona grandis) on the nutrient status of young alluvial soils in west Venezuela. For. Ecol. Manage. 6: 33–57.

    Google Scholar 

  • Hölscher D., Möller R.F., Denich M. and Fölster H. 1997. Nutrient input–output budget of shifting agriculture in Eastern Amazonia. Nutr. Cycl. Agroecosyst. 47: 49–57.

    Google Scholar 

  • Katou H., Clothier B.E. and Green S.R. 1996. Anion transport involving competitive adsorption during transient water flow in an Andisol. Soil Sci. Soc. Am. J. 60: 1368–1375.

    Google Scholar 

  • Kauffman J.B., Cummings D.L., Ward D.E. and Babbitt R. 1995. Fire in the Brazilian Amazon: biomass, nutrient pools, and losses in slashed primary forests. Oecologia 104(4): 397–408.

    Google Scholar 

  • Klinge R. 1998. Wasser-und Nährstoffdynamik im Boden und Bestand beim Aufbau einer Holzplantage im östlichen Amazonasgebiet. Göttinger Beiträge zur Land-und Forstwirtschaft in den Tropen und Subtropen No. 122. Erich Goltze, Göttingen, Germany.

    Google Scholar 

  • Klinge R., Schmidt J. and Fölster H. 2001. Simulation of water drainage of a rain forest and forest conversion plots using a soil water model. J. Hydrol. 246: 82–95.

    Google Scholar 

  • Mackensen J., Hölscher D., Klinge R. and Fölster H. 1996. Nutrient transfer to the atmosphere by burning of debris in eastern Amazonia. For. Ecol. Manage. 86(13): 121–128.

    Google Scholar 

  • Mackensen J., Tillery-Stevens M., Klinge R. and Fölster H. 2000. Site parameters, species composition, phytomass structure and element stores of a terra-firme forest in East-Amazonia, Brazil. Plant Ecol. 151: 101–119.

    Google Scholar 

  • Malmer A. 1996. Hydrological effects and nutrient losses of forest plantation establishment on tropical rainforest land in Sabah, Malaysia. J. Hydrol. 174(12): 129–148.

    Google Scholar 

  • Malmer A. and Grip H. 1994. Converting tropical rainforest to forest plantation in Sabah, Malaysia. 2. Effects on nutrient dynamics and net losses in stream water. Hydrol. Process. 8(3): 195–209.

    Google Scholar 

  • Montagnini F. and Buschbacher R.J. 1989. Nitrification rates in two undisturbed tropical rain forests and three slash-and-burn sites of the Venezuelan Amazon. Biotropica 21(1): 9–14.

    Google Scholar 

  • Nye P.H. and Greenland D.J. 1964. Changes in the soil after clearing tropical forest. Plant and Soil 21(1): 101–112.

    Google Scholar 

  • Palm C.A., Swift M.J. and Woomer P.L. 1996. Soil biological dynamics in slash-and-burn agriculture. Agric. Ecosyst. Environ. 58(1): 61–74.

    Google Scholar 

  • Parker G.G. 1985. The effect of disturbance on water and solute budgets of hillslope tropical rainforest in north-eastern Costa Rica. Ph.D. Thesis, University of Georgia, Athens, USA.

    Google Scholar 

  • Penman H.L. 1948. Natural evaporation from open water, bare soil and grass. Proc. R. Soc. (London) 193 (Series A): 120–146.

    Google Scholar 

  • Raison R.J., Keith H. and Khanna P.K. 1990. Effects of fire on the nutrient supplying capacity of forest soils. In: Wyck W.J. and Mees C.A. (eds) Impact of Intensive Harvesting on Forest Site Productivity. Proc. IEA/BE A3 Workshop March 1989, New Zealand, pp. 39–54.

  • Ruhiyat D. 1989. Die Entwicklung der standörtlichen Nährstoffvorräte bei naturnaher Waldbewirtschaftung und im Plantagenbetrieb, Ostkalimantan (Indonesian). Göttinger Beiträge zur Land und Forstwirtschaft in den Tropen und Subtropen, No. 35. Erich Goltze, Göttingen, Germany.

    Google Scholar 

  • Russel C.E. 1983. Nutrient cycling and productivity of native and plantation forests at Jari Florestal, Pará, Brazil. Ph.D. Thesis, University of Georgia, Athens, USA.

    Google Scholar 

  • Sanches P.A. and Salinas J.G. 1981. Low-input technology for managing oxisols and ultisols in tropical America. Adv. Agron. 34: 279–406.

    Google Scholar 

  • Sommer R. 2000. Water and Nutrient Balance in Deep Soils under Shifting Cultivation with and without Burning in the Eastern Amazon. Cuvillier, Göttingen, Germany.

  • Steudler P.A., Melillo J.M., Bowden R.D. and Castro M.S. 1991. The effects of natural and human disturbances on soil nitrogen dynamics and trace gas fluxes in a Puerto Rican wet forest. Biotropica 23(4a): 356–363.

    Google Scholar 

  • Stoorvogel J.J., Janssen B.H. and van Breemen N. 1997. The nutrient budgets of a watershed and its forest ecosystem in the Tai national park in Cote d'Ivoire. Biogeochemistry 37: 159–177.

    Google Scholar 

  • Tomkins I.B., Kellas J.D., Tolhurst K.G. and Oswin D.A. 1991. Effects of fire intensity on soil chemistry in a Eucalypt forest. Aust. J. Soil Res. 29(1): 25–47.

    Google Scholar 

  • UNESCO-ISRIC 1990. Soil map of the world. Revised legend. Reprinted with corrections. World Soil Resour. Rep. 60: 11–19.

    Google Scholar 

  • Wada S.I. 1984. Mechanism of apparent salt adsorption in ando soils. Soil Sci. Plant Nutr. 30: 77–83.

    Google Scholar 

  • Wong M.T.F. and Northcliff S. 1995. Seasonal fluctuations of native available N and soil management implications. Fert. Res. 42(13): 13–26.

    Google Scholar 

  • Wong M.T.F., Hughes R. and Rowell D.L. 1990. Retarded leaching of nitrate in acid soils from the Tropics: measurement of the effective anion exchange capacity. J. Soil Sci. 41(4): 655–663.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klinge, R., Araujo Martins, A., Mackensen, J. et al. Element loss on rain forest conversion in East Amazonia: comparison of balances of stores and fluxes. Biogeochemistry 69, 63–82 (2004). https://doi.org/10.1023/B:BIOG.0000031040.38388.9b

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:BIOG.0000031040.38388.9b

Navigation