Skip to main content
Log in

Modeling Intrinsic Bioremediation for Interpret Observable Biogeochemical Footprints of BTEX Biodegradation: The Need for Fermentation and Abiotic Chemical Processes

  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

The intrinsic bioremediation of BTEX must be documentedby the stoichiometric consumption and production ofseveral other compounds, called `footprints' of the biodegradation reaction. Although footprints of BTEXbiodegradation are easy to identify from reactionstoichiometry, they can be confounded by the stepwise nature of the biodegradation reactions and by several abiotic chemicalreactions that also produce or consume the footprints. In order to track the footprintsfor BTEX biodegradation, the following reactions need tobe considered explicitly: (1) fermentation and methanogenesis as separate processes, (2) precipitation and dissolution ofcalcite, (3) precipitation and dissolution of amorphous ironmonosulfide (FeS), (4) conversion of FeS into the thermodynamically stable pyrite (FeS2) with loss ofsulfide and abiotic formation of H2, and (5) reductivedissolution of solid iron(III) by oxidation of sulfide. We critically review the research that underlies why these mechanismsmust be included and how to describe them quantitatively.A companion manuscript develops and applies a mathematical model that includes these reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acton DW & Barker JF (1992) Insitubiodegradation potential of aromatic-hydrocarbons in anaerobic groundwaters. J. Contam. Hydrol. 9: 325–352

    Google Scholar 

  • Bariteau A & Thiry M (2001) Analysis and simulation of the geochemical transfers within an aquifer: the Beauce ground-water and the alteration of the Fontainebleau Sands. Bulletin De La Societe Geologique De France 172(3): 367–381

    Google Scholar 

  • Bielefeldt AR & Stensel HD (1999a) Evaluation of biodegradation kinetic testing methods and longterm variability in biokinetics for BTEX metabolism. Water Res. 33: 733–740

    Google Scholar 

  • Bielefeldt AR & Stensel HD (1999b) Modeling competitive inhibi-tion effects during biodegradation of BTEX mixtures. Water Res. 33: 707–714

    Google Scholar 

  • Bond PL, Druschel GK & Banfield JF (2000) Comparison of acid mine drainage microbial communities in physically and geochemically distinct ecosystems. Appl. Environ. Microbiol. 66: 4962–4971.

    Google Scholar 

  • Boulegue J & Michard G (1979) Sulphur speciations and redox processes in reducing environments. In: Jenne EA (Ed) Chemical Modelling in Aqueous Systems (pp 25–50). American Chemical Society, Washington, D.C

    Google Scholar 

  • Busenberg E & Plummer LN (1986) A comparative study of the dissolution and crystal growth kinetics of calcite and aragonite. In: Mumpton FA (Ed) Studies on Diagenesis, Vol. 1578 (pp 139–168). USGS Bulletin, Denver, CO

    Google Scholar 

  • Canfield DE (1989) Reactive iron in marine-sediments. Geochimica et Cosmochimica Acta 53: 619–632

    Google Scholar 

  • Canfield DE, Raiswell R & Bottrell S (1992) The reactivity of sedimentary iron minerals toward sulfide. Am. J. Sci. 292: 659–683

    Google Scholar 

  • Chapelle FH, Haack SK, Adriaens P, Henry MA & Bradley PM (1996) Comparison of E(H) and H-2 measurements for delin-eating redox processes in a contaminated aquifer. Environ. Sci. Technol. 30: 3565–3569

    Google Scholar 

  • Chapelle FH, McMahon PB, Dubrovsky NM, Fujii RF, Oaksford ET & Vroblesky DA (1995) Deducing the distribution of terminal electron-accepting processes in hydrologically diverse groundwater systems. Water Resour. Res. 31: 359–371

    Google Scholar 

  • Chaudhuri BK & Wiesmann U (1996) Kinetic study of the anaerobic degradation of toluene by a mixed culture. Acta Biotechnologica 16: 31–41

    Google Scholar 

  • Chong TH & Sheikholeslami R (2001) Thermodynamics and kin-etics for mixed calcium carbonate and calcium sulfate precipitation. Chem. Eng. Sci. 56: 5391–5400

    Google Scholar 

  • Chou L, Garrels RM & Wollast R (1989) Comparative study of the kinetics and mechanisms of dissolution of carbonate minerals. In: Schott J & Lasaga AC (Eds) Kinetic Geochemistry, vol. 78 (pp 269–282)

  • Clement TP (1997) Rt3d-a modular computer code for simulating reactive multi-species transport in 3-dimensional groundwater systems. The U.S. Department of Energy, PNNL-SA-11720, Contract DE-AC06-76RLO 1830

  • Coates JD, Ellis DJ, Gaw CV & Lovley DR (1999) Geothrix fermentans Gen. Nov., Sp Nov., a novel Fe(Iii)-reducing bacterium from a hydrocarbon-contaminated aquifer. Int. J. System. Bacteriol. 49: 1615–1622

    Google Scholar 

  • Cozzarelli IM, Baedecker MJ, Eganhouse RP & Goerlitz DF (1994) The geochemical evolution of low-molecular-weight organic-acids derived from the degradation of petroleum contaminants in groundwater. Geochimica et Cosmochimica Acta 58: 863–877

    Google Scholar 

  • Davison W (1991) The solubility of iron sulfides in synthetic and natural-waters at ambient-temperature. Aqua. Sci. 53: 309–329.

    Google Scholar 

  • Davison W, Phillips N & Tabner BJ (1999) Soluble iron sulfide species in natural waters: Reappraisal of their stoichiometry and stability constants. Aqua. Sci. 61(1): 23–43

    Google Scholar 

  • Dawe RA & Zhang YP (1997) Kinetics of calcium carbonate scaling using observations from glass micromodels. J. Petrol. Sci. Eng. 18: 179–187

    Google Scholar 

  • Dolfing J (1988) Acetogenesis. In: Zehnder AJB (Ed) Biology of Anaerobic Microorganisms (pp 417–468). John Wiley, New York

    Google Scholar 

  • Dos Santos Afonso MD & Stumm W (1992) Reductive dissolution of iron(Iii) (hydr)oxides by hydrogen-sulfide. Langmuir 8: 1671–1675

    Google Scholar 

  • Drobner E, Huber H, Wachtershauser G, Rose D & Stetter KO (1990) Pyrite formation linked with hydrogen evolution under anaerobic conditions. Nature 346: 742–744

    Google Scholar 

  • Edwards KJ, Bond PL, Druschel GK, McGuire MM, Hamers RJ & Banfield JF (2000) Geochemical and biological aspects of sulfide mineral dissolution: lessons from Iron Mountain, California. Chem. Geol. 169: 383–397

    Google Scholar 

  • Edwards EA & Grbicgalic D (1994) Anaerobic degradation of toluene and Oxylene by a methanogenic consortium. Appl. Environ. Microbiol. 60: 313–322

    Google Scholar 

  • Eisenlohr L, Meteva K, Gabrovsek F & Dreybrodt W (1999) The inhibiting action of intrinsic impurities in natural calcium carbonate minerals to their dissolution kinetics in aqueous H 2 O-Co 2 solutions. Geochimica et Cosmochimica Acta 63: 989–1001

    Google Scholar 

  • Furukawa Y & Barnes HL (1995) Reactions forming pyrite from precipitated amorphous ferrous sulfide. In: Geochemical Transformations of Sedimentary Sulfur, Vol. 612 (pp 194–205). ACS Symposium Series

    Google Scholar 

  • Gersberg RM, Dawsey WJ & Bradley MD (1991) Biodegradation of monoaromatic hydrocarbons in groundwater under denitrifying conditions. Bull. Environ. Contam. Toxicol. 47: 230–237

    Google Scholar 

  • Grbicgalic D (1991) Anaerobic transformation of aromatic hydro-carbon pollutants under fermentative methanogenic conditions. Periodicum Biologorum 93: 533–546

    Google Scholar 

  • Grbicgalic D & Vogel TM (1987) Transformation of toluene and benzene by mixed methanogenic cultures. Appl. Environ. Microbiol. 53: 254–260

    Google Scholar 

  • Gutjahr A, Dabringhaus H & Lacmann R (1996) Studies of the growth and dissolution kinetics of the CaCo 3 polymorphs calcite and aragonite. 1. Growth and dissolution rates in water. J. Cryst. Growth 158: 296–309

    Google Scholar 

  • Holliger C & Zehnder AJB (1996) Anaerobic biodegradation of hydrocarbons. Curr. Opin. Biotechnol. 7: 326–330

    Google Scholar 

  • Huertadiaz MA & Morse JW (1990) A quantitative method for de-termination of trace-metal concentrations in sedimentary pyrite. Marine Chem. 29: 119–144

    Google Scholar 

  • Hunkeler D, Jorger D, Haberli K, Hohener P & Zeyer J (1998) Petro-leum hydrocarbon mineralization in anaerobic laboratory aquifer columns. J. Contam. Hydrol. 32: 41–61

    Google Scholar 

  • Hutchins SR, Miller DE & Thomas A (1998) Combined laborat-ory/ field study on the use of nitrate for in situ bioremediation of a fuel-contaminated aquifer. Environ. Sci. Technol. 32: 1832–1840

    Google Scholar 

  • Jakobsen R, Albrechtsen HJ, Rasmussen M, Bay H, Bjerg PL & Christensen TH (1998) H-2 concentrations in a landfill leachate plume (Grindsted, Denmark): in situenergetics of terminal elec-tron acceptor processes. Environ. Sci. Technol. 32: 2142–2148

    Google Scholar 

  • Jakobsen R & Postma D (1999) Redox zoning, rates of sulfate reduction and interactions with Fe-reduction and methanogenesis in a shallow sandy aquifer, Romo, Denmark. Geochimica et Cosmochimica Acta 63: 137–151

    Google Scholar 

  • Katsifaras A & Spanos N (1999) Effect of inorganic phosphate ions on the spontaneous precipitation of vaterite and on the transformation of vaterite to calcite. J. Cryst. Growth 204: 183–190

    Google Scholar 

  • Kennedy LG, Everett JW, Dewers T, Pickins W & Edwards D (1999) Application of mineral iron and sulfide analysis to eval-uate natural attenuation at fuel contaminated site. J. Environ. Engin.-Asce 125: 47–56

    Google Scholar 

  • Kostka JE & Nealson KH (1995) Dissolution and reduction of magnetite by bacteria. Environ. Sci. Technol. 29: 2535–2540

    Google Scholar 

  • Landmeyer JE, Vroblesky DA & Chapelle FH (1996) Stable carbon isotope evidence of biodegradation zonation in a shallow jet-fuel contaminated aquifer. Environ. Sci. Technol. 30: 1120–1128

    Google Scholar 

  • Lovley DR, Chapelle FH & Woodward JC (1994) Use of dissolved H(2) concentrations to determine distribution of microbially catalyzed redox reactions in anoxic groundwater. Environ. Sci. Technol. 28: 1205–1210

    Google Scholar 

  • Lovley DR, Coates JD, Woodward JC & Phillips EJP (1995) Ben-zene oxidation coupled to sulfate reduction. Appl. Environ. Microbiol. 61: 953–958

    Google Scholar 

  • Luther GW (1991) Pyrite synthesis via polysulfide compounds. Geochimica et Cosmochimica Acta 55: 2839–2849

    Google Scholar 

  • Luther GWI (1990) The frontier-molecular-orbital theory approach in geochemical processes. In: Stumm W (Ed) Aquatic Chemical Kinetics (pp 173–198), John Wiley, New York

    Google Scholar 

  • Major DW, Mayfield CI and Barker JF (1988) Biotransformation of benzene by denitrification in aquifer sand. Ground Water 26: 8–14

    Google Scholar 

  • Malmstead MJ, Brockman FJ, Valocchi AJ & Rittmann BE (1995) Modeling biofilm biodegradation requiring cosubstrates-the quinoline example. Water Sci. Technol. 31: 71–84

    Google Scholar 

  • Meckenstock RU, Morasch B, Warthmann R, Schink B, Annweiler E, Michaelis W & Richnow HH (1999) C-13/C-12 isotope fractionation of aromatic hydrocarbons during microbial degradation. Environ. Microbiol. 1: 409–414

    Google Scholar 

  • Millero F, Huang F, Zhu XR, Liu XW & Zhang JZ (2001) Ad-sorption and desorption of phosphate on calcite and aragonite in seawater. Aqua. Geochem. 7: 33–56

    Google Scholar 

  • Morgan P, Lewis ST & Watkinson RJ (1993) Biodegradation of benzene, toluene, ethylbenzene and xylenes in gas-condensate-contaminated groundwater. Environ. Pollut. 82: 181–190

    Google Scholar 

  • Mormile MR & Suflita JM (1996) The toxicity of selected gasoline components to glucose methanogenesis by aquifer microorganisms. Anaerobe 2: 299–303

    Google Scholar 

  • Morse JW & Berner RA (1979) Chemistry of calcium carbonate in deep ocean. In: Jenne EA (Ed) Chemical Modelling in Aqueous Systems, Vol. 93 (pp 499–535). Am. Chem. Coc., Symp. Ser.

  • Morse JW and Mackenzie FT (1990) Geochemistry of Sedimentary Carbonates. Elsevier, Amsterdam.

    Google Scholar 

  • Moses CO and Herman JS (1991) Pyrite oxidation at circumneutral Ph. Geochimica et Cosmochimica Acta 55: 471–482

    Google Scholar 

  • Moses CO, Nordstrom DK, Herman JS & Mills AL (1987) Aqueous pyrite oxidation by dissolved-oxygen and by ferric iron. Geochimica et Cosmochimica Acta 51: 1561–1571

    Google Scholar 

  • Nancollas GH & Reddy MM (1971) The crystallization of calcium carbonate. Ii. calcite growth mechanism. J. Coll. Inter. Sci. 37: 824–829

    Google Scholar 

  • Neal C, Jarvie HP, Williams RJ, Neal M, Wickham H & Hill L (2002) Phosphorus-calcium carbonate saturation relationships in a lowland chalk river impacted by sewage inputs and phos-phorus remediation: an assessment of phosphorus self-cleansing mechanisms in natural waters. Sci. Total Environ. 282: 295–310

    Google Scholar 

  • Nicholson RV, Gillham RW & Reardon EJ (1990) Pyrite oxidation in carbonate-buffered solution. 2. Rate control by oxide coatings. Geochimica et Cosmochimica Acta 54: 395–402

    Google Scholar 

  • Nicholson RV, Gillham RW & Reardon EJ (1988) Pyrite oxid-ation in carbonate-buffered solution. 1. Experimental kinetics. Geochimica et Cosmochimica Acta 52: 1077–1085.

    Google Scholar 

  • Nilsson O & Sternbeck J (1999) A mechanistic model for calcite crystal growth using surface speciation. Geochimica et Cosmochimica Acta 63: 215–223

    Google Scholar 

  • Nordstrom DK & Southam G (1997) Geomicrobiology of sulfide mineral oxidation. In: Geomicrobiology: Interactions between Microbes and Minerals, Vol. 35 (pp 361–390). Mineralogical Society America, Washington

    Google Scholar 

  • NRC (National Research Council (1993) In situBioremediation: When Does It Work?, National Academy Press, Washington, D.C

    Google Scholar 

  • NRC (National-Research-Council) (2000) Natural Attenuation for Groundwater Remediation. National Academy Press, Washington, D.C

    Google Scholar 

  • Ohara M & Reid RC (1973) Modeling Crystal Growth Rates from Solution. Prentice-Hall, Englewood Cliffs, NJ, 272 pp

    Google Scholar 

  • Palmer AN (1991) The origin and morphology of limestone caves. Geol. Sci. Am. Bull. 103: 1–21

    Google Scholar 

  • Parsiegla KI & Katz JL (1999) Calcite growth inhibition by copper( Ii) I. Effect of supersaturation. J. Cryst. Growth 200: 213–226

    Google Scholar 

  • Patel GB, Agnew BJ & Dicaire CJ (1991) Inhibition of pure cultures of methanogens by benzenering compounds. Appl. Environ. Microbiol. 57: 2969–2974

    Google Scholar 

  • Peiffer S, Dos Santos Afonso MD, Wehrli B & Gächter R (1992) Kinetics and mechanism of the reaction of H2s with lepidocrocite. Environ. Sci. Technol. 26, 2408–2413

    Google Scholar 

  • Plummer LN & Busenberg E (1982) The solution of calcite, aragonite and vaterite in CO 2-H 2 O solution between 0 and 90 C and an evaluation of the aqueous model for the system CaCO 3-CO 2-H 2 O. Geochim. Cosmochim. Acta. 46: 1011–1040

    Google Scholar 

  • Plummer LN, Busenberg E & Riggs AC (2000) In situgrowth of calcite at Devils Hole, Nevada: comparison of field and laboratory rates to a 500,000 year record of near-equilibrium calcite growth. Aqua. Geochem. 6: 257–274

    Google Scholar 

  • Plummer LN, Wigley T & Parkhurst DL (1978) The kinetics of calcite dissolution in CO 2-water systems at 5 to 60 C and 0.0 to 1.0 atm CO 2. Am. J. Sci. 278: 179–216

    Google Scholar 

  • Pokrovsky OS & Schott J (2001) Kinetics and mechanism of dolomite dissolution in neutral to alkaline solutions revisited. Am. J. Sci. 301: 597–626

    Google Scholar 

  • Pokrovsky OS & Schott J (2002) Surface chemistry and dissolution kinetics of divalent metal carbonates. Environ. Sci. Technol. 36: 426–432

    Google Scholar 

  • Pope GA, Sepehrnoori K, Sharma MM, McKinney DC, Speitel GEJ & Jackson RE (1999) Three-dimensional Napl fate and transport model (Utchem). EPA, United States Environmental Protection Agency, EPA/600/R-99/011, February 1999, Cincinnati, OH 45268. EPA/600/R-99/011

  • Postma D & Jakobsen R (1996) Redox zonation: equilibrium constraints on the Fe(Iii)/So4-Reduction Interface. Geochimica et Cosmochimica Acta 60: 3169–3175

    Google Scholar 

  • Pyzik AJ & Sommer SE (1981) Sedimentary iron monosulfides: kinetics and mechanism of formation. Geochimica et Cosmochimica Acta 45: 687–698

    Google Scholar 

  • Rafai HS, Newell CJ, Gonzales JR, Dendrou S, Kennedy L & Wilson JT (1998) Bioplume Iii-Natural Attenuation Decision Support System-User's Manual Version 1.0. EPA, United States Environmental Protection Agency, Washington, DC

  • Reinhard M, Shang S, Kitanidis PK, Orwin E, Hopkins GD & Lebron CA (1997) In situBTEX biotransformation under enhanced nitrate-and sulfate-reducing conditions. Environ. Sci. Technol. 31: 28–36

    Google Scholar 

  • Revesz K, Coplen TB, Baedecker MJ, Glynn PD & Hult M (1995) Methane production and consumption monitored by stable H and C isotope ratios at a crude oil spill site, Bemidji, Minnesota. Appl. Geochem. 10: 505–516

    Google Scholar 

  • Rickard D (1974) Kinetics and mechanism of the sulfidation of goethite. Am. J. Sci. 274: 636–652

    Google Scholar 

  • Rickard D (1975) Kinetics and mechanism of pyrite formation at low temperatures. Am. J. Sci. 275: 941–952

    Google Scholar 

  • Rickard D (1995) Kinetics of Fes precipitation. 1. Competing reaction-mechanisms. Geochimica et Cosmochimica Acta 59: 4367–4379

    Google Scholar 

  • Rickard D (1997) Kinetics of pyrite formation by the H 2 s oxidation of iron (Ii) monosulfide in aqueous solutions between 25 and 125 C: The rate equation. Geochimica et Cosmochimica Acta 61: 115–134

    Google Scholar 

  • Rickard D & Luther GW (1997) Kinetics of pyrite formation by the H 2 s oxidation of iron(Ii) monosulfide in aqueous solutions between 25 and 125 C: The mechanism. Geochimica et Cosmochimica Acta 61: 135–147

    Google Scholar 

  • Rickard D, Schoonen MAA & Luther GW (1995) Chemistry of iron sulfides in sedimentary environments. In: Vairavamurthy MA & Schoonen MAA (Eds) Geochemical Transformations of Sedimentary Sulfur, Vol. 612 (pp 168–193), American Chemical Society, Washington, DC

    Google Scholar 

  • Rittmann BE, Banaszak JE & Reed DT (2002) Reduction of Np(V) and precipitation of Np(IV) by an anaerobic microbial consortium. Biodegradation 13(5): 329–342

    Google Scholar 

  • Rittmann BE, Seagren E, Wrenn BA, Valocchi AJ, Ray C & Raskin L (1994) In situ bioremediation, 2nd edn, Noyes Publications, Park Ridge, NJ

    Google Scholar 

  • Salanitro JP, Wisniewski HL, Byers DL, Neaville CC & Schroder RA (1997) Use of aerobic and anaerobic microcosms to assess BTEX biodegradation in aquifers. Ground Water Monitor. Remed. 17: 210–221

    Google Scholar 

  • Schäfer D, Schäfer W & Kinzelbach W(1998a) Simulation of reactive processes related to biodegradation in aquifers. 1. Structure of the three-dimensional reactive transport model. J. Contam. Hydrol. 31: 167–186

    Google Scholar 

  • Schäfer D, Schäfer W & Kinzelbach W (1998b) Simulation of reactive processes related to biodegradation in aquifers. 2. Model application to a column study on organic carbon degradation. J. Contam. Hydrol. 31: 187–209

    Google Scholar 

  • Schoonen MAA & Barnes HL (1991) Reactions forming pyrite and marcasite from solution. 2. Via Fes precursors below 100 C. Geochimica et Cosmochimica Acta 55: 1505–1514

    Google Scholar 

  • Sherman LA & Barak P (2000) Solubility and dissolution kinetics of dolomite in Ca-Mg-HCO 3 /CO 3 solutions at 25 C and 0.1 MPa carbon dioxide. Soil Sci. Soc. Am. J. 64: 1959–1968

    Google Scholar 

  • Spanos N & Koutsoukos PG (1998) Kinetics of precipitation of calcium carbonate in alkaline Ph at constant supersaturation. Spontaneous and seeded growth. J. Phys. Chem. B 102: 6679–6684

    Google Scholar 

  • Sternbeck J (1997) Kinetics of rhodochrosite crystal growth at 25 C: The role of surface speciation. Geochimica et Cosmochimica Acta 61(4): 785–793

    Google Scholar 

  • Stumm W & Morgan JJ (1996) Aquatic Chemistry. John Wiley, New York

    Google Scholar 

  • Svensson U & Dreybrodt W (1992) Dissolution kinetics of natural calcite minerals in CO 2-water systems approaching calcite equilibrium. Chem. Geol. 100: 129–145

    Google Scholar 

  • Taylor P, Rummery TE & Owen DG (1979) Reactions of iron mono-sulfide solids with aqueous hydrogen sulfide up to 160 C. J. Inorganic Nucl. Chem. 41: 1683–1687

    Google Scholar 

  • Van Cappellen P, Charlet L, Stumm W & Wersin P (1993) A surface complexation model of the carbonate mineral-aqueous.417 solution interface. Geochimica et Cosmochimica Acta 57(15): 3505–3518

    Google Scholar 

  • Vogel TM & Grbicgalic D (1986) Incorporation of oxygen from water into toluene and benzene during anaerobic fermentative transformation. Appl. Environ. Microbiol. 52: 200–202

    Google Scholar 

  • Vroblesky DA & Chapelle FH (1994) Temporal and spatial changes of terminal electron-accepting processes in a petroleum hydrocarbon-contaminated aquifer and the significance for contaminant biodegradation. Water Resour. Res. 30: 1561–1570

    Google Scholar 

  • Wang QW & Morse JW (1996) Pyrite formation under conditions approximating those in anoxic sediments. 1. Pathway and morphology. Marine Chem. 52: 99–121

    Google Scholar 

  • Wiedemeier T, Wilson JT, Kampbell DH, Miller RN & Hansen JE (1995) Technical protocol for implementing intrinsic remediation with long-term monitoring for natural attenuation of fuel contamination dissolved in groundwater. Air Force Center for Environmental Excellence Technology Transfer Division, Brooks Air Force Base, 11/11/95, San Antonio, TX

  • Williamson MA & Rimstidt J D (1992) Correlation between structure and thermodynamic properties of aqueous sulfur species. Geochimica et Cosmochimica Acta 56: 3867–3880

    Google Scholar 

  • Williamson MA & Rimstidt JD (1994) The kinetics and elec-trochemical rate-determining step of aqueous pyrite oxidation. Geochimica et Cosmochimica Acta 58: 5443–5454

    Google Scholar 

  • Wollast R (1990) Rate and mechanism of dissolution of carbonates in the system CaCO 3-MgCO 3. In: Stumm W (Ed) Aquatic Chemical Kinetics (pp 431–445). John Wiley, New York

    Google Scholar 

  • Xu TF, White SP, Pruess K & Brimhall GH (2000) Modeling of pyrite oxidation in saturated and unsaturated subsurface flow systems. Transport Porous Med. 39(1): 25–56

    Google Scholar 

  • Yao WS & Millero FH (1995) Oxidation of hydrogen sulfide by Mn(IV) and Fe(III) (hydr)oxides in seawater. In: Geochemical Transformations of Sedimentary Sulfur, Vol. 612 (pp 260–279). ACS Symposium Series

    Google Scholar 

  • Yao WS & Millero FJ (1996a) Adsorption of phosphate on manganese dioxide in seawater. Environ. Sci. Technol. 30: 536–541

    Google Scholar 

  • Yao WS & Millero FJ (1996b) Oxidation of hydrogen sulfide by hydrous Fe(Iii) oxides in seawater. Marine Chem. 52: 1–16.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maurer, M., Rittmann, B.E. Modeling Intrinsic Bioremediation for Interpret Observable Biogeochemical Footprints of BTEX Biodegradation: The Need for Fermentation and Abiotic Chemical Processes. Biodegradation 15, 405–417 (2004). https://doi.org/10.1023/B:BIOD.0000044590.23221.b1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:BIOD.0000044590.23221.b1

Navigation