Skip to main content
Log in

Formulation of the CBC-Model for Modelling the Contaminants and Footprints in Natural Attenuation of BTEX

  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

This paper provides the details of the Coupled Biological and Chemical (CBC)model for representing in situ bioremediation of BTEX. The CBC modelcontains novel features that allow it to comprehensively track the footprints ofBTEX bioremediation, even when the fate of those footprints is confounded byabiotic reactions and complex interactions among different kinds of microorganisms.To achieve this comprehensive tracking of all the footprints, the CBC modelcontains important new biological features and key abiotic reactions. The biologicalmodule of the CBC-model includes these important new aspects: (1) it separatesBTEX fermentation from methanogenesis, (2) it explicitly includes biomass as asink for electrons and carbon, (3) it has different growth rates for each biomasstype, and (4) it includes inhibition of the different reactions by other electronacceptors and by sulfide toxicants. The chemical module of the CBC-modelincludes abiotic reactions that affect the footprints of the biological reactions.In particular, the chemical module describes the precipitation/dissolution ofCaCO3, Fe2O3, FeS, FeS2, and S°. The kinetics for the precipitation/dissolution reactions follow the critical review in Maurer and Rittmann (2003a).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ballapragada BS, Stensel, HD, Puhakka JA & Ferguson JF (1997) Effect of hydrogen on reductive dechlorination of chlorinated ethenes. Environ. Sci. Technol. 31(6): 1728-1734

    Google Scholar 

  • Bjerg PL, Jakobsen R, Bay H, Rasmussen M, Albrechtsen H-J & Christensen PH (1997) Effects of well sampling construction on H 2 measurements made for characterization of redox conditions in a contaminated aquifer. Environ. Sci. Technol. 31(10): 3029–3031

    Google Scholar 

  • Bradley PM & Chapelle FH (1997) Kinetics of DCE and VC mineralization under methanogenic and Fe(III)-reducing conditions. Environ. Sci. Technol.31: 2692-2696

    Google Scholar 

  • Bradley PM& Chapelle FH (1998a) Microbial mineralization of VC and DCE under different terminal electron accepting conditions. Anaerobe. 4: 81-87

    Google Scholar 

  • Bradley PM & Chapelle FH (1998b) Effect of contaminant concentration on aerobic microbial mineralization of DCE and VC in stream-bed sediments. Environ. Sci. Technol. 32(5): 553-557.

    Google Scholar 

  • Bradley PM, Chapelle FH & Lovley. DR (1998a) Humic acids as electron acceptors for anaerobic microbial oxidation of vinyl chloride and dichloroethene. Appl. Environ. Microbiol. 64(8): 3102-3105

    Google Scholar 

  • Bradley PM, Landmeyer JE & Dinicola RS (1998b) Anaerobic oxidation of [1, 2-14 C]dichloroethene under Mn(IV)-reducing conditions. Appl. Environ. Microbiol. 64: 1560-1562

    Google Scholar 

  • Bradley PM, Chapelle FH & Wilson JT (1997) Field and laboratory evidence of intrinsic biodegradation of vinyl chloride contamin-ation in a Fe(III)-reducing aquifer. J. Contam. Hydrol. 31(1998): 111-127

    Google Scholar 

  • Bradley PM & Chapelle FH (1996) Anaerobic mineralization of vinyl chloride in Fe(III)-reducing aquifer sediments. Environ. Sci. Technol. 30: 2084-2086

    Google Scholar 

  • Capiro NL, McDade JM, Adamson DT, Bedient PB & Hughes JB (2002) Hydraulic effects of hydrogen delivery for treatment of chlorinated DNAPL. Third International Conference on Remedi-ation of Chlorinated and Recalcitrant Compounds. 20-23 May 2002, Monterey, CA

  • Canfield DE, Thamdrup B & Hansen. JW (1993) Geochim. Cosmochim. Acta. 57: 3867-3883

    Google Scholar 

  • Chapelle FH, Vroblesky DA, Woodward JC & Lovely DR (1997) Practical considerations for measuring hydrogen concentrations in groundwater. Environ. Sci. Technol. 31(10): 2873-2877

    Google Scholar 

  • Chapelle FH (1996) Identifying redox conditions that favor the natural attenuation of chlorinated ethenes in contaminated ground water systems. Proceedings of the Symposium on Natural Attenuation of Chlorinated Organics in Ground Water, 11-13

  • Chapelle FH, McMahon PB, Dubrovsky, NM, Fugii RF, Oaks-ford ET & Vroblesky DA (1995) Deducing the distribution of terminal electron-accepting processes in hydrologically diverse groundwater systems. Water Resour. Res. 31: 359-371

    Google Scholar 

  • Cozzarelli IM, Suflita JM, Ulrich GA, Harris SH, Scholl MA, Schlottmann JL & Christenson S (2000) Geochemical and microbial methods for evaluating anaerobic processes in an aquifer contaminated by landfill leachate. Environ. Sci. Technol. 34(18): 4025-4033

    Google Scholar 

  • DiStefano TD, Gossett JM & Zinder SH (1992) Hydrogen as an electron donor for dechlorination of tetrachloroethene by an anaerobic mixed culture. Appl. Environ. Microbiol. 58(11): 3622-3629

    Google Scholar 

  • Fennell DE & Gossett JM (1998) Modeling the production of and competition for hydrogen in a dechlorinating culture. Environ. Sci. Technol. 32: 2450-2460

    Google Scholar 

  • Gieg LM, Kolhatkar RV, McInerney MJ, Tanner RS, Harris Jr SH, Sublette KL & Suflita JM (1999) Intrinsic bioremediation of petroleum hydrocarbons in a gas condensate-contaminated aquifer. Environ. Sci. Technol. 33(15): 2550-2560

    Google Scholar 

  • Goodwin S, Conrad R & Zeikus 1988. Influence of pH on microbial hydrogen metabolism in diverse sedimentary ecosystems. Appl. Environ. Microbiol. 54(2): 590-593

    Google Scholar 

  • Hartmans S. & de Bont JAM (1992) Aerobic vinyl chloride metabolism in Mycobacterium aurum l i. Appl. Environ. Microbiol. 54: 1220-1226

    Google Scholar 

  • Hendrickson ER, Payne JA, Young RM, Starr MG, Perry MP, Fahnestock S, Ellis DE & Ebersole RC (2002) Molecular analysis of Dehalococcoides 16S ribosomal DNA from chloroethene-contaminated sites throughout North America and Europe. Appl. Environ. Microbiol. 68(2): 485-495

    Google Scholar 

  • Holliger C, Hahn D, Harmsen H, Ludwig W, Schumacher B, Tindall F, Vazquez F, Weiss N & Zehnder AJB (1998) Dehalobacter restrictusgen. nov and sp. nov., a strictly anaerobic bacterium that reductively dechlorinates tetra and trichloroethene in an anaerobic respiration. Arch. Microbiol. 169: 313-321

    Google Scholar 

  • Hydro-Search, Inc (1994) Remedial Investigation Report Refuse Hideaway Landfill, Middleton, WI, Volume I. Project Number 301483135

  • Jakobsen R, Albrechtsen H-J, Rasmussen M, Bay H, Bjerg P & Christensen TH (1998) H2 concentrations in a landfill leachate plume (Grindsted, Denmark): In situ energetics of terminal electron acceptor processes. 32(14): 2142-2148

    Google Scholar 

  • Kampbell DH, Wilson JT & McInnes AM (1998) Determining dissolved hydrogen, methane, and vinyl chloride concentrations in aqueous solutions on a nanomolar scale with the bubble strip method. Proceedings of the 1998 Conference on Hazardous Waste Research (pp. 187-201)

  • Koenigsberg S, Sandefur C & Lapus K (2001) Time-release electron donor technology: Results of forty-two field applications. In Magar VS, Fennell DE, Alleman BC & Leeson A (eds) Anaerobic degradation of chlorinated solvents. Vol 6(7) (pp 257–264). The Sixth International In Situ and On-Site Bioremediation Symposium, San Diego, CA., 4-7 June 2001. Battelle Press, Columbus, OH

    Google Scholar 

  • Lovely DR, Chapelle FH & Woodward JC (1994) Use of dissolved H 2 concentrations to determine distribution of microbi-ally catalyzed redox reactions in anoxic groundwater. Environ. Sci. Technol. 28(7): 1205-1210

    Google Scholar 

  • Lovley DR & Goodwin S (1988) Hydrogen concentrations as an indicator of the predominant terminal electron-accepting reactions in aquatic sediments. Geochim. Cosmochim. Acta. 52: 2993-3003

    Google Scholar 

  • Marsh TL & McInerney MJ (2001) Relationship of hydrogen bioavailability to chromate reduction in aquifer sediments. Appl. Environ. Microbiol. 67(4): 1517-1521

    Google Scholar 

  • Maymo-Gattell X, Anguish T, Gossett JM & Zinder SH (1999) Reductive dechlorination of chlorinated ethenes and 1,2-dichloroethane by “Dehalococcoides ethenogenes” 195. Appl. Environ. Microbiol. 65: 3108-3113

    Google Scholar 

  • Maymo-Gattell X, Chien Y, Gossett JM & Zinder SH (1997) Isolation of a bacterium that reductively dechlorinates tetrachloro-ethene to ethene. Science 276: 1568-1571

    Google Scholar 

  • Maymo-Gatell X, Tandoi V, Gossett JM & Zinder SH (1995) Characterization of an H 2-utilizing enrichment culture that reductively dechlorinates tetrachloroethylene to vinyl chloride and ethene in the absence of methanogenesis and acetogenesis. Appl. Environ. Microbiol. 61: 3928-3933

    Google Scholar 

  • McCarty PL & Semprini L (1994) Groundwater treatment for chlorinated solvents. In Norris RD et al. (eds) Handbook of bioremediation. Lewis Publishers, Boca Raton, FL

    Google Scholar 

  • McInnes D & Kampbell DH (2000) The bubble strip method of determining dissolved hydrogen (H 2 ) in well water. Field Analytical Chemistry and Technology. 4(6): 283-296

    Google Scholar 

  • Microseeps (2002) Microseeps gas stripping cell instructions. Pitts-burgh, PA. http://www.microseeps.com

  • Montgomery Watson (1997) Predesign and additional studies work plan: Refuse hideaway landfill, Middleton, WI. Project Number 1242161.01120201. Montgomery Watson, Madison, WI.

  • Mormile MR, Koteswara RG, Robinson JA, McInerney MJ & Suflita JM (1996) The importance of hydrogen in landfill fermentation. Appl. Environ. Microbiol. 62(5): 1583-1588

    Google Scholar 

  • Newell CJ, Haas PE, Hughes JB & Khan T (2000) Results from two direct hydrogen delivery field tests for enhanced dechlorination. 2nd International Conference on Remediation of Chlorinated and Recalcitrant Compounds, 22-25 May, 2000, Monterey, CA

  • Scholz-Muramatsu H, Neumann A, Messmer M, Moore E & Diekert G (1995) Isolation and characterization of Dehalospirillum multivoransgen. nov., sp. nov., a tetrachloroethylene-utilizing, strictly anaerobic bacterium. Arch. Microbiol. 163: 48-56

    Google Scholar 

  • Smatlak CR, Gossett JM and Zinder SH (1996) Comparative kin-etics of hydrogen utilization for reductive dechlorination of tetrachloroethene and methanogenesis in an anaerobic enrichment culture. Environ. Sci. Technol. 30: 2850-2858

    Google Scholar 

  • U.S. EPA (1998) Technical protocol for evaluating natural atten-uation of chlorinated solvents in ground water. Office of Research and Development, EPA/600/R-98/128 September 1998, available at http://www.epa.gov/ada/pubs/reports.html

  • Vroblesky DA, Bradley PM & Chapelle FH (1996) Environ. Sci. Technol. 30: 1377-1381

    Google Scholar 

  • Wiedemeier TH, Rifai HS, Newell CJ & Wilson JT (1999) Natural attenuation of fuels and chlorinated solvents in the subsurface. John Wiley & Sons, Inc. New York, NY

    Google Scholar 

  • Wisconsin Department of Natural Resources (1995) Superfund fact sheet: Proposed plan refuse hideaway landfill. Town of Middleton, WI. Terry Evanson, Project Manager

  • Yang Y & McCarty PL (1998) Competition for hydrogen within a chlorinated solvent dehalogenating anaerobic mixed culture. Environ. Sci. Technol. 32: 3591-3597.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maurer, M., Rittmann, B.E. Formulation of the CBC-Model for Modelling the Contaminants and Footprints in Natural Attenuation of BTEX. Biodegradation 15, 475–485 (2004). https://doi.org/10.1023/B:BIOD.0000044588.86054.05

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:BIOD.0000044588.86054.05

Navigation