Skip to main content
Log in

Effects of Fungal Bioaugmentation and Cyclodextrin Amendment on Fluorene Degradation in Soil Slurry

  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

This study assesses the potential of fungal bioaugmentationand the effect of maltosyl-cyclodextrin amendment, as anapproach to accelerate fluorene biodegradation in soil slurries.47 fungal strains isolated from a contaminated site weretested in the biodegradation of fluorene. Results showed thegreater efficiency of ``adaptated'' fungi isolated fromcontaminated soil vs. reference strains belonging to thecollection of the laboratory. These assays allowed us toselect the most efficient strain, Absidia cylindrospora, whichwas used in a bioaugmentation process. In the presence ofAbsidia cylindrospora, more than 90% of the fluorene wasremoved in 288 h while 576 h were necessary in the absenceof fungal bioaugmentation. Maltosyl-cyclodextrin, abranched-cyclodextrin was chosen in order to optimize fluorenebioavailability and biodegradation in soil slurries. The resultsof this study indicate that Absidia cylindrospora andmaltosyl-cyclodextrin could be used successfully in bioremediation systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersson BE, Welinder L, Olsson PA, Olsson S & Henrysson T (2000) Growth of inoculated white-rot fungi and their interactions with the bacterial community in soil contaminated with the polycyclic aromatic hydrocarbons, as measured by phospholipid fatty acids. Bioresource. Technol. 73: 29–36

    Google Scholar 

  • April TM, Foght JM & Currah RS (2000) Hydrocarbon-degrading filamentous fungi isolated from flare pit soils in northern and western Canada. Can. J. Microbiol. 46: 38–49

    Google Scholar 

  • Atlas RM & Cerniglia CE (1995) Bioremediation of petroleum pollutants. Bioscience 45: 332–339

    Google Scholar 

  • Aust SD (1995) Mechanisms of degradation by white rot fungi. Environ. Health. Perspect. 103: 59–61

    Google Scholar 

  • Baldrin B, Tiehm A & Fritzsche C (1993) Degradation of phenanthrene, fluorene, fluoranthene and pyrene by a Mycobacterium sp. Appl. Environ. Microbiol. 59: 1927–1930

    Google Scholar 

  • Brodkorb TS & Legge RL (1992) Enhanced biodegradation of phenanthrene in oil tar-contaminated soils supplemented with Phanerochaete chrysosporium. Appl. Environ. Microbiol. 58: 3117–3121

    Google Scholar 

  • Carmichael LM & Pfaender FK (1997) Polynuclear aromatic hydrocarbon metabolism in soils: relationship to soil characteristics and preexposure. Environ. Toxicol. Chem. 16: 666–675

    Google Scholar 

  • Cerniglia CE & Sutherland JB (2001) Bioremediation of polycylic aromatic hydrocarbons by ligninolytic and non-ligninolyic fungi. In: Gadd GM (Ed) Fungi in Bioremediation (pp 136–187). British Mycological Society, Cambridge University Press

  • Cerniglia CE (1992) Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation 3: 351-368.

    Google Scholar 

  • Cha DK, Chiu PL, Kim SD & Chang JS (1999) Treatment technologies. Wat. Environ. Res. 71: 870–885

    Google Scholar 

  • Cutright TJ (1995) Polycyclic aromatic hydrocarbon biodegradation and kinetics using Cunninghamella echinulata var. elegans. Inter. Biodeterior. Biodegrad. 397–408

  • Domsch KH, Gams W & Anderson T-H (1980) Compendium of Soil Fungi. Academic Press, London

  • Fava F & Ciccotosto VF (2002) Effects of a randomly methylated beta-cyclodextrins (RAMED) on bioavailability and aerobic biodegradation of polychlorinated three pristine soils spiked with a transformer oil. Appl. Microbiol. Biotechnol. 58: 393–399

    Google Scholar 

  • Fava F, Di Gioia D & Marchetti L (1998) Cyclodextrin effects on the ex-situ bioremediation of a chronically polychlorobiphenylcontaminated soil. Biotechnol Bioeng. 58: 345–355

    Google Scholar 

  • Findlay M, Fogel S, Conway L & Taddeo A (1995) Field treatment of coal tar-contaminated soil based on results of laboratory treatability studies. In: Young LY & Cerniglia CE (Eds) Microbial Transformation and Degradation of Toxic Organic Chemicals (pp 487–513). Wiley-Liss, New York

    Google Scholar 

  • Galzy P & Slonimski p (1957) Variations physiologiques de la levure au cours de la croissance sur l'acide lactique comme seule source de carbone. C. R. Acad. Sci. Paris. 245 sér. D: 2423–2426

    Google Scholar 

  • Garon D, Fauvelle F, Gèze A, Wouessidjewe D & Seigle-Murandi F (2001) Effect of cyclodextrins on fungal degradation of fluorene. Ann. Pharm. 59: 366–368

    Google Scholar 

  • Garon D, Krivobok S & Seigle-Murandi F (2000) Fungal degradation of fluorene. Chemosphere 40: 91-97. Cited in Cerniglia CE & Sutherland JB (2001) Bioremediation of polycylic aromatic hydrocarbons by ligninolytic and non-ligninolyic fungi. In: Gadd GM (Ed) Fungi in Bioremediation (pp 136–187). British Mycological Society, Cambridge University Press

    Google Scholar 

  • Garon D, Krivobok S, Wouessidjewe D & Seigle-Murandi F (2002) Influence of surfactants on solubilization and fungal degradation of fluorene. Chemosphere 47: 303–309

    Google Scholar 

  • Keith LH & Telliard WA (1979) Priority pollutants-IA perspective view. Environ. Sci. Technol. 13: 16–23

    Google Scholar 

  • Krivobok S, Miriouchkine E, Seigle-Murandi F & Benoit-Guyod J-L (1998) Biodegradation of anthracene by soil fungi. Chemosphere 37: 523–530

    Google Scholar 

  • Lestan D & Lamar RT (1996) Development of fungal inocula for bioaugmentation of contaminated soils. Appl. Environ. Microbiol. 62: 2045–2052

    Google Scholar 

  • Madsen EL, Winding A, Malachrowsky K, Thomas CT & Ghiorse WC (1992) Contrasts between subsurface microbial communities and their metabolic adaptation to polycyclic aromatic hydrocarbons at a forested and an urban coal-tar disposal site. Microbial. Ecol. 24: 199–213

    Google Scholar 

  • Martelmans K, Waworth S, Lawlor T, Speck W, Tainer B & Zeiger E (1986) Salmonella mutagenicity tests. II. Results from the testing of 270 chemicals. Environ. Mutagen. 8: 1–119

    Google Scholar 

  • Mihelcic JR, Luehing DR, Mitzell RJ & Stapleton JM (1993) Bioavailability of sorbed-and separate-phase chemicals. Biodegradation 4: 141–153

    Google Scholar 

  • Pothuluri JV, Freeman JP, Evans FE & Cerniglia CE (1993) Biotransformation of fluorene by the fungus Cunninghamella elegans. Appl. Environ. Microbiol. 59: 1977–1980

    Google Scholar 

  • Richnow HH, Eschenbach A, Mahro R, Kaestner K, Annweiler F, Seifert R & Michaelis W (1999) Formation of nonextractable soil residues: a stable isotope approach. Environ. Sci. Technol. 33: 3761–3767

    Google Scholar 

  • Sack U & Günther T (1993) Metabolism of PAH by fungi and correlation with extracellular enzymatic activities. J. Basic. Microbiol. 33: 269–277

    Google Scholar 

  • Salicis F, Krivobok S, Jack M & Benoit-Guyod J-L (1999) Biodegradation of fluoranthene by soil fungi. Chemosphere 38: 3031–3039

    Google Scholar 

  • Schwartz A & Bar R (1995) Cyclodextrin-enhanced degradation of toluene and p-toluic acid by Pseudomonas putida. Appl. Environ. Microbiol. 61: 2727–2731

    Google Scholar 

  • Solano-Serena F, Marchal R, Lebeault J-M & Vandecasteele J-P (2000) Distribution in the environment of degradative capacities for gasoline attenuation. Biodegradation 11: 29–35

    Google Scholar 

  • Straube WL, Jones-Mechan J, Pritchard P-H & Jones WR (1999) Bench scale optimization of bioaugmentation strategies for treatment of soils contaminated with high molecular weight polyaromatic hydrocarbons. Res. Conserv. Recycle. 27: 27–37

    Google Scholar 

  • Szejtli J (1988) Cyclodextrin Technology. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Thomas JM, Lee MD, Scott MJ & Ward CH (1989) Microbial ecology of the subsurface at an abandoned creosote waste site. J. Ind. Microbiol. 4: 109–120

    Google Scholar 

  • Wang JM, Brusseau ML & Miller RM (1995) Biodegradation of nonionic organic compounds complexed with cyclodextrins. 209th ACS National Meeting, American Chemical Society, Anaheim, CA, 2-6 April

  • Wang JM, Marlowe EM, Miller-Maier RM & Brusseau ML (1998) Cyclodextrin-enhanced biodegradation of phenanthrene. Environ. Sci. Technol. 32: 1907–1912

    Google Scholar 

  • Wang X & Brusseau ML (1995) Cyclopentanol-enhanced solubilization of polycyclic aromatic hydrocarbons by cyclodextrins. Environ. Sci. Technol. 29: 2346–2351

    Google Scholar 

  • Warcup JH (1950) The soil-plate method for isolation of fungi from soil. Nature 166: 117–118

    Google Scholar 

  • Wischmann H, Steinhart H, Hupe K, Montresori G & Stegmann R (1996) Degradation of selected PAHs in soil/compost and identification of intermediates. Int. J. Environ. Anal. Chem. 64: 247–255

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fran¸oise Seigle-Murandi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garon, D., Sage, L. & Seigle-Murandi, F. Effects of Fungal Bioaugmentation and Cyclodextrin Amendment on Fluorene Degradation in Soil Slurry. Biodegradation 15, 1–8 (2004). https://doi.org/10.1023/B:BIOD.0000009934.87627.91

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:BIOD.0000009934.87627.91

Navigation