Skip to main content
Log in

A comparison of Passalidae (Coleoptera, Lamellicornia) diversity and community structure between primary and secondary tropical forest in Los Tuxtlas, Veracruz, Mexico

  • Published:
Biodiversity & Conservation Aims and scope Submit manuscript

Abstract

Comparison of the diversity and community structure of Coleoptera (Passalidae) collected in Los Tuxtlas, Veracruz, Mexico, in primary and secondary tropical forest has been carried out. The saproxylophagous beetles studied can be differentiated according to their presence in three distinct microhabitats of rotting logs: underbark, sapwood—heartwood and microhabitat generalists. Over the 2-year study period, 12 passalid species were recorded (six Passalini and six Proculini) represented by a total of 2971 individuals, collected from 234 rotting logs. The rarefaction method, the lognormal species—abundance relationship, and the nonparametric jackknife method were used to compare species richness between the habitats. The data were also fitted to log series, truncated lognormal, geometric, and broken-stick species abundance models to detect changes in community structure. The community composition of Passalidae in Los Tuxtlas did not differ ostensibly between the primary and secondary forests. Neither the mean number of individuals nor the biomass per log differed significantly. Furthermore, there were no significant differences between the two habitats in terms of the number of underbark, sapwood/heartwood, and microhabitat generalist species. Different richness estimators indicated that the primary forest community is only slightly richer. The slight decrease in richness of the secondary forest is related to a decrease in dominance by certain species, as well as to a more balanced abundance distribution, which is adequately described by the broken-stick model. Complementary explanations for this pattern may be: (1) that logging reduces the abundance of dominant species, thus preventing competitive exclusion in the secondary forest; and (2) that passalid diversity is not regulated by the diversity of tree species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Basset Y., Novotny V., Miller S.E. and Springates N.D. 1998. Assessing the impact of forest disturbance on tropical invertebrates: some comments. Journal of Applied Ecology 35: 461–466.

    Google Scholar 

  • Boucher S. 1986. Contribution á l'étude des Passalidae Guyano-Amazoniens (Coleoptera, Scarabaeoidea). Annales de la Société entomologique de France (N.S.) 22: 491–533.

    Google Scholar 

  • Brown J.H and Maurer B.A. 1986. Body size, ecological dominance and Cope's rule. Nature 324: 248–250.

    Google Scholar 

  • Bührnheim P.F. and Aguiar N.O. 1991. Passalideos (Coleoptera) da Ilha de Maracá, Roraima. Acta Amazonica 21: 25–33.

    Google Scholar 

  • Castillo M.L. 1987. Descripción de la comunidad de Coleoptera Passalidae en el bosque tropical perennifolio de la región de Los Tuxtlas, Veracruz. Ph.D. Thesis, Facultad de Ciencias, UNAM, Mexico.

    Google Scholar 

  • Castillo M.L. and Reyes-Castillo P. 1997. Passalidae. In: González E., Dirzo R. and Voght R. (eds) Historia Natural de Los Tuxtlas. Universidad Nacional Autónoma de México, Mexico, pp. 293–298.

    Google Scholar 

  • Colwell R.K. and Coddington J.A. 1995. Estimating terrestrial biodiversity through extrapolation. In: Hawksworth D.L. (ed) Biodiversity Measurement and Estimation. Chapman & Hall, London, pp. 101–118.

    Google Scholar 

  • Connell J.H. 1978. Diversity in tropical rain forest and coral reefs. Science 1994: 1302–1310.

    Google Scholar 

  • Dirzo R., Horvitz C.C., Quevedo H. and López M.A. 1992. The effects of gap size and age on the understory herb community of a tropical Mexican rain forest. Journal of Ecology 80: 809–822.

    Google Scholar 

  • Fagan W.F. and Kareiva P.M. 1997. Using compiled species lists to make biodiversity comparisons among regions: a test case using Oregon butterflies. Biological Conservation 80: 249–259.

    Google Scholar 

  • Fonseca C.R.V. 1988. Contribuçâo ao conhecimento da bionomia de Passalus convexus Dalman, 1817 e Passalus latifrons Percheron, 1841 (Coleoptera: Passalidae). Acta Amazonica 18: 197–222.

    Google Scholar 

  • Grant P.R. and Schluter D. 1984. Interspecific competition inferred from patterns of guild structure. In: Strong D.R., Simberloff D., Abele L.G. and Thistle A.B. (eds) Ecological Communities, Conceptual Issues and the Evidence, Columbia University Press, New York, pp. 159–181.

    Google Scholar 

  • Hill J.K. and Hamer K.C. 1998. Using species abundance models as indicators of habitat disturbance in tropical forest. Journal of Applied Ecology 35: 458–460.

    Google Scholar 

  • Hill J.K., Hamer K.C., Lace L.A. and Banham W.M.T. 1995. Effects of selective logging on tropical forest butterflies on Buru, Indonesia. Journal of Applied Ecology 32: 754–760.

    Google Scholar 

  • Holloway J.D., Kirk-Spriggs A.H. and Chey V.K. 1992. The response of some rain forest insect groups to logging and conversion to plantation. Philosophical Transactions of the Royal Society London, Series B 335: 425–436.

    Google Scholar 

  • Hurlbert S.H. 1971. The non-concept of species diversity: a critique and alternative parameters. Ecology 52: 577–586.

    Google Scholar 

  • Huston M.A. 1994. Biological Diversity. The Coexistence of Species on Changing Landscapes. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Hutchinson G.E. 1959. Homage to Santa Rosalia; or, why are there so many kinds of animals. American Naturalist 93: 145–159.

    Google Scholar 

  • Ibarra G. and Sinaca S. 1987. Listados florísticos de México. VII. Estación de Biología Tropical de Los Tuxtlas, Veracruz. Instituto de Biología, Universidad Nacional Autónoma de México, Mexico.

    Google Scholar 

  • Janzen D.H. 1988. Tropical dry forest, the most endangered major-tropical ecosystem. In: Wilson E.O. (ed) National Forum of Biodiversity. National Academy Press, Washington, DC, pp. 130–137.

    Google Scholar 

  • Krebs C.H.J. 1989. Ecological Methodology. Harper and Row, New York.

    Google Scholar 

  • Kremen C., Colwell R.K., Erwin T.L., Murphy D.D., Noss R.F. and Sanjayan M.A. 1993. Terrestrial arthropod assemblages for natural areas monitoring. Ecological Applications 2: 203–217.

    Google Scholar 

  • Legendre L. and Legendre P. 1983. Numerical Ecology. Elsevier, Amsterdam, The Netherlands.

    Google Scholar 

  • Lobo J.M. and Castillo M.L. 1997. The relationship between ecological capacity and morphometry in a neotropical community of Passalidae (Coleoptera). Coleopterists Bulletin 51: 147–153.

    Google Scholar 

  • Lobo J.M. and Favila M.E. 1999. Different ways of constructing octaves and their consequences on the prevalence of the bimodal species abundance distribution. Oikos 87: 321–326.

    Google Scholar 

  • Lobo J.M. and Morón M.A. 1993. La modificación de las comunidades de coleópteros Melolonthidae y Scarabaeidae en dos áreas protegidas mexicanas tras dos décadas de estudios faunísticos. Giornale Italiano de Entomologia 6: 391–406.

    Google Scholar 

  • Lot-Helgueras A. 1976. La Estación de Biología Tropical de Los Tuxtlas: pasado, presente y futuro. In: Gómez-Pompa A., Vazquéz-Yañes C., del Amo S. and Butanda A. (eds) Investigaciones Sobre la Regeneración de Selvas Altas en Veracruz, Mèxico, CECSA, CNEB, INIREB, México, D.F., pp. 31–69.

    Google Scholar 

  • Ludwig J.A. and Reynolds J.F. 1988. Statistical Ecology. Wiley, New York.

    Google Scholar 

  • Macvean C.H. and Schuster J.C. 1981. Altitudinal distribution of Passalid beetles (Coleoptera, Passalidae) and Pleistocene dispersal on the Volcanic Chain of northern Central America. Biotropica 13: 29–38.

    Google Scholar 

  • Magurran A.E. 1988. Ecological Diversity and its Measurement. Princeton University Press, Princeton, New Jersey.

    Google Scholar 

  • May R.M. 1975. Patterns of species abundance and diversity. In: Cody M.L. and Diamond J.M. (eds) Ecology and Evolution of Communities. Belknap Press, Cambridge, Massachusetts, pp. 81–120.

    Google Scholar 

  • Mouzinho J.R.C. and Fonseca C.R.V. 1998. Contribuição ao estudo da Passalidofauna (Coleoptera, Scarabaeoidea, Passalidae) em uma área de terra firme da Amazônia Central. Acta Zoológica Mexicana (n.s.) 73: 19–44.

    Google Scholar 

  • Nummelin M. 1998. Log-normal distributions of species abundance is not a universal indicator of rainforest disturbance. Journal of Applied Ecology 35: 454–457.

    Google Scholar 

  • Petraitis P.S., Latham R.E. and Niesenbaum R.A. 1989. The maintenance of species diversity by disturbance. Quarterly Review Biological Ecology 64: 393–418.

    Google Scholar 

  • Pielou E.C. 1975. Ecological Diversity. Wiley, New York.

    Google Scholar 

  • Raguso R.A. and Llorente J. 1990. The butterflies (Lepidoptera) of the Tuxtlas Mts., Veracruz, México, revisited: species-richness and habitat disturbance. Journal of Research of Lepidopterology 29: 105–133.

    Google Scholar 

  • Reyes-Castillo P. 1970. Coleoptera, Passalidae: Morfología y división en grandes grupos; géneros americanos. Folia Entomológica Mexicana 20-21: 1–204.

    Google Scholar 

  • Reyes-Castillo P. 1973. Passalidae de la Guayana Francesa (Coleoptera, Lamellicornia). Bulletin du Muséum National d'Histoire Naturelle 129: 1541–1587.

    Google Scholar 

  • Reyes-Castillo P. and Halffter G. 1978. Análisis de la distribución geográfica de la tribu Proculini (Coleoptera, Passalidae). Folia Entomológica Mexicana 39-40: 222–226.

    Google Scholar 

  • Rodríguez M.E. 1985. Passalus interstitialis Pascoe (Coleoptera: Passalidae) y su papel en el inicio de la descomposición de la madera en el bosque de la Estación Ecológica Sierra del Rosario, Cuba. I. Actividad en condiciones naturales. Ciencias Biológicas 13: 29–37.

    Google Scholar 

  • Samways M.J. 1994. Insect Conservation Biology. Chapman & Hall, London.

    Google Scholar 

  • Schuster J.C. 1978. Biogeographical and ecological limits of New World Passalidae (Coleoptera). Coleopterists Bulletin 21: 21–28.

    Google Scholar 

  • Siegel S. and Castellan N.J. 1988. Nonparametric Statistics for the Behavioural Sciences. McGraw-Hill, New York.

    Google Scholar 

  • Snedecor G.W. and Cochran W.G. 1967. Statistical Methods. Iowa State University Press, Ames, Iowa.

    Google Scholar 

  • Spitzer K., Jaros J., Havelka J. and Leps J. 1997. Effects of small-scale disturbance on butterfly communities of an Indochinese montane rainforest. Biological Conservation 80: 9–15.

    Google Scholar 

  • Sugihara G. 1980. Minimal community structure: an explanation of species abundance patterns. American Naturalist 116: 770–787.

    Google Scholar 

  • Tokeshi M. 1993. Species abundance patterns and community structure. Advances in Ecological Research 24: 111–186.

    Google Scholar 

  • Wilson J.B. 1993. Would we recognise a Broken-Stick community if we found one? Oikos 67: 181–183.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge M. Lobo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castillo, M.L., Lobo, J.M. A comparison of Passalidae (Coleoptera, Lamellicornia) diversity and community structure between primary and secondary tropical forest in Los Tuxtlas, Veracruz, Mexico. Biodiversity and Conservation 13, 1257–1269 (2004). https://doi.org/10.1023/B:BIOC.0000019400.73064.c7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:BIOC.0000019400.73064.c7

Navigation