Skip to main content
Log in

META-X: Generic Software for Metapopulation Viability Analysis

  • Published:
Biodiversity & Conservation Aims and scope Submit manuscript

Abstract

The major tools used to make population viability analyses (PVA) quantitative are stochastic models of population dynamics. Since a specially tailored model cannot be developed for every threatened population, generic models have been designed which can be parameterised and analysed by non-modellers. These generic models compromise on detail so that they can be used for a wide range of species. However, generic models have been criticised because they can be employed without the user being fully aware of the concepts, methods, potentials, and limitations of PVA. Here, we present the conception of a new generic software package for metapopulation viability analysis, META-X. This conception is based on three elements, which take into account the criticism of earlier generic PVA models: (1) comparative simulation experiments; (2) an occupancy-type model structure which ignores details of local population dynamics (these details are integrated in external submodels); and (3) a unifying currency to quantify persistence and viability, the ‘intrinsic mean time to extinction’. The rationale behind these three elements is explained and demonstrated by exemplary applications of META-X in the three fields for which META-X has been designed: teaching, risk assessment in the field, and planning. The conception of META-X is based on the notion that PVA is a tool to deal with rather than to overcome uncertainty. The purpose of PVA is to produce relative, not absolute, assessments of extinction risk which support, but do not supplant, management decisions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akçakaya H.R. 1995. RAMAS GIS: Linking Landscape Data with Population Viability Analysis, Version 3.0. Applied Biomathematics, Setauket, New York.

    Google Scholar 

  • Akçakaya H.R. 1997. RAMAS (R) Metapop: Viability Analysis for Stage-structured Metapopulations, Version 2. Applied Biomathematics, Setauket, New York.

    Google Scholar 

  • Beissinger S.R. and Westphal M.I. 1998. On the use of demographic models of population viability in endangered species management. Journal of Wildlife Management 62: 821-841.

    Google Scholar 

  • Boyce M.S. 1992. Population viability analysis. Annual Review of Ecology and Systematics 23: 481-506.

    Google Scholar 

  • Brook B.W., Burgman M.A. and Frankham R. 2000a. Differences and congruencies between PVA packages: the importance of sex ratio for predictions of extinction risk. Conservation Ecology 4: 6. http://www.consecol.org/vol4/iss1/art6.

    Google Scholar 

  • Brook B.W., O'Grady J.J., Chapman A.P., Burgman M.A., Akçakaya H.R. and Frankham R. 2000b. Predictive accuracy of population viability analysis in conservation biology. Nature 404: 385-387.

    Google Scholar 

  • Burgman M. and Possingham H. 2000. Population viability analysis for conservation: the good, the bad and the undescribed. In: Young A.G. and Clarke G.M. (eds), Genetics, Demography and Viability of Fragmented Populations. Cambridge University Press, Cambridge, UK, pp. 97-112.

    Google Scholar 

  • Burgman M.A., Ferson S. and Akçakaya H.R. 1993. Risk Assessment in Conservation Biology. Chapman & Hall, London.

    Google Scholar 

  • Drechsler M. and Wissel C. 1997. Separability of local and regional dynamics in metapopulations. Theoretical Population Biology 51: 9-21.

    Google Scholar 

  • Drechsler M. and Wissel C. 1998. Trade-offs between local and regional scale management of metapopulations. Biological Conservation 83: 31-41.

    Google Scholar 

  • Frank K. 2004. Ecologically differentiated rules of thumb for habitat network design-lessons from a formula. Biodiversity and Conservation 13: 189-206 (this issue).

    Google Scholar 

  • Frank K. and Wissel C. 1998. Spatial aspects of metapopulation survival: from model results to rules of thumb for landscape management. Landscape Ecology 13: 363-379.

    Google Scholar 

  • Frank K., Lorek H., Koester F., Sonnenschein M., Wissel C. and Grimm V. 2003. META-X: Software for Metapopulation Viability Analysis. Springer, Berlin.

    Google Scholar 

  • Grimm V. 1999. Ten years of individual-based modelling in ecology: what have we learned, and what could we learn in the future? Ecological Modelling 115: 129-148.

    Google Scholar 

  • Grimm V. 2002. Visual debugging: a way of analyzing, understanding, and communicating bottom-up simulation models in ecology. Natural Resource Modeling 15: 23-38.

    Google Scholar 

  • Grimm V. and Storch I. 2000. Minimum viable population size of capercaillie Tetrao urogallus: results from a stochastic model. Wildlife Biology 5: 219-225.

    Google Scholar 

  • Groom M.J. and Pascual M.A. 1998. The analysis of population persistence: an outlook on the practice of viability analysis. In: Fiedler P.L. and Kareiva P.M. (eds), Conservation Biology: For the Coming Decade. Chapman & Hall, New York, pp. 4-26.

    Google Scholar 

  • Hanski I. 1994. A practical model of metapopulation dynamics. Journal of Animal Ecology 63: 151-162.

    Google Scholar 

  • Hanski I. 1999. Metapopulation Ecology. Oxford University Press, Oxford, UK.

    Google Scholar 

  • Hanski I., Alho J. and Moilanen A. 2000. Estimating the parameters of migration and survival for individuals in metapopulations. Ecology 81: 239-251.

    Google Scholar 

  • Henle K., Amler K., Bahl A., Finke E., Frank K., Settele J. et al. 1999. Faustregeln als Entscheidungshilfen für Planung und Management im Naturschutz. In: Amler K., Bahl A., Henle K., Kaule G., Poschlod P. and Settele J. (eds), Populationsbiologie in der Naturschutzpraxis. Isolation, Flächenbedarf und Biotopansprüche von Pflanzen und Tieren. Ulmer, Stuttgart, Germany, pp. 267-290.

    Google Scholar 

  • Kindvall O. 2000. Comparative precision of three spatially realistic simulation models of metapopulation dynamics. Ecological Bulletins 48: 101-110.

    Google Scholar 

  • Koivisto I. 1963. Ñber den Ortswechsel der Geschlechter beim Auerhuhn (Tetrao urogallus) nach Markierungsergebnissen. Die Vogelwarte 22: 75-79.

    Google Scholar 

  • Köster F., Stephan T., Finke J. and Sonnenschein M. 2000. Ein Simulationswerkzeug zum praktischen Einsatz in Naturschutz und Landschaftsplanung-ExiDlg. In: Möller D.P.F. (ed), Frontiers in Simulation, Simulationstechnik, Vol. 14. Symposium in Hamburg, September 2000. ASIM (Arbeitsgemeinschaft Simulation), Germany, pp. 503-508.

    Google Scholar 

  • Lacy R.C. 2000. Structure of the VORTEX simulation model for population viability analysis. Ecological Bulletins 48: 191-203.

    Google Scholar 

  • Lacy R.C., Hughes K.A. and Miller P.S. 1995. VORTEX: A Stochastic Simulation of the Extinction Process, Version 7, User's Manual. IUCN/SSC Conservation Breeding Specialist Group, Apple Valley, Minnesota.

    Google Scholar 

  • Lindenmayer D.B., Burgman M.A., Akçakaya H.R., Lacy R.C. and Possingham H.P. 1995. A review of the generic computer programs ALEX, RAMAS/space and VORTEX for modelling the viability of wildlife metapopulations. Ecological Modelling 82: 161-174.

    Google Scholar 

  • Ludwig D. 1996. The distribution of population survival times. American Naturalist 147: 506-526.

    Google Scholar 

  • Marshall K. and Edwards-Jones G. 1998. Reintroducing capercaillie (Tetrao urogallus) into southern Scotland: identification of minimum viable populations at potential release sites. Biodiversity and Conservation 7: 275-296.

    Google Scholar 

  • Moilanen A. 1999. Patch occupancy models of metapopulation dynamics: efficient parameter estimation using implicit statistical inference. Ecology 80: 1031-1043.

    Google Scholar 

  • Moilanen A. 2000. The equilibrium assumption in estimating the parameters of metapopulation models. Journal of Animal Ecology 69: 143-153.

    Google Scholar 

  • Moilanen A. 2002. Implications of empirical data quality for metapopulation model parameter estimation and application. Oikos 96: 516-530.

    Google Scholar 

  • Moilanen A. and Nieminen M. 2002. Simple connectivity measures in spatial ecology. Ecology 83: 1131-1145.

    Google Scholar 

  • Moilanen A., Smith A.T. and Hanski I. 1998. Long-term dynamics in a metapopulation of the American pika. American Naturalist 152: 530-542.

    Google Scholar 

  • Possingham H.P. and Davies I. 1995. ALEX: a model for the viability analysis of spatially structured populations. Biological Conservation 73: 143-150.

    Google Scholar 

  • Shaffer M.L. 1981. Minimum population sizes for species conservation. BioScience 31: 131-134.

    Google Scholar 

  • Sjögren-Gulve P. and Hanski I. 2000. Metapopulation viability analysis using occupancy models. Ecological Bulletins 48: 53-71.

    Google Scholar 

  • Soulé M.E. (ed). 1986. Conservation Biology. Sinauer, Sunderland, Massachusetts.

    Google Scholar 

  • Stelter C., Reich M., Grimm V. and Wissel C. 1997. Modelling persistence in dynamic landscapes: lesson from a metapopulation of the grasshopper Bryodema tuberculata. Journal of Animal Ecology 66: 508-518.

    Google Scholar 

  • Stephan T. 1993. Stochastische Modelle zur Extinktion von Populationen. Ph.D. Thesis, Philipps-University Marburg, Germany.

    Google Scholar 

  • Storch I. 1993. Habitat use and spacing of capercaillie in relation to forest fragmentation patterns. Dissertation, University of Munich, Germany, 97 pp.

    Google Scholar 

  • Storch I. 2001. Capercaillie. BWP update. The Journal of Birds of theWestern Palearctic 3(1): 1-24.

    Google Scholar 

  • Storch I. and Segelbacher G. 2000. Genetic correlates of spatial population structure in central European capercaillie and back grouse: a project in progress.Wildlife Biology 6: 239-243.

    Google Scholar 

  • Ter Braak C.J.F., Hanski I. and Verboom J. 1998. The incidence function approach to modelling of metapopulation dynamics. In: Bascompte J. and Solé R. (eds), Modeling Spatiotemporal Dynamics in Ecology. Springer, Berlin, Germany, pp. 167-188.

    Google Scholar 

  • Verboom J., Lankester K. and Metz J.A.J. 1991. Linking local and regional dynamics in stochastic metapopulation models. Biological Journal of the Linnean Society 42: 39-55.

    Google Scholar 

  • Verboom J., Metz J.A.J. and Meelis E. 1993. Metapopulation models for impact assessment of fragmentation. In: Vos C.S. and Opdam P. (eds), Landscape Ecology of a Stressed Environment. Chapman & Hall, London, pp. 172-191.

    Google Scholar 

  • Vos C.C., Verboom J., Opdam P.F.M. and Ter Braak C.J.F. 2001. Toward ecologically scaled landscape indices. American Naturalist 183: 24-41.

    Google Scholar 

  • Wissel C. and Stöcker S. 1991. Extinction of populations by random influences. Theoretical Population Biology 39: 315-328.

    Google Scholar 

  • Wissel C., Stephan T. and Zaschke S.-H. 1994. Modelling extinction and survival of small populations. In: Remmert H. (ed), Minimum Animal Populations. Springer, Berlin, Germany, pp. 67-103.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker Grimm.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grimm, V., Lorek, H., Finke, J. et al. META-X: Generic Software for Metapopulation Viability Analysis. Biodiversity and Conservation 13, 165–188 (2004). https://doi.org/10.1023/B:BIOC.0000004317.42949.f7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:BIOC.0000004317.42949.f7

Navigation