Anti-fungal effects of phenolic amides isolated from the root bark of Lycium chinense

Abstract

Four phenolic amides, dihydro-N-caffeoyltyramine (1), trans-N-feruloyloctopamine (2), trans-N-caffeoyltyramine (3), and cis-N-caffeoyltyramine (4), were isolated from an ethyl acetate extract of the root bark of Lycium chinense Miller. All had an anti-fungal effect; compounds 1-3 were potent at 5–10 μg ml−1 and were without hemolytic activity against human erythrocyte cells. Compound 4 was active at 40 μg ml−1. All four compounds impeded the dimorphic transition of pathogen, Candida albicans.

This is a preview of subscription content, access via your institution.

References

  1. Blondle SE, Houghten RA (1992) Design of model amphipathic peptides having potent antimicrobial activities. Biochemistry 31: 12688–12694.

    Google Scholar 

  2. Chen C-Y, Chang F-R, Yen H-F, Wu Y-C (1998) Amides from stems of Annona cherimola. Phytochemistry 45: 1443–1447.

    Google Scholar 

  3. Funayama S, Yoshida K, Konno H, Hikkino H (1980) Structure of Kukoamine A, a hypotensive principle of Lycium chinenseroot bark. Tetrahedron Lett. 21: 1355–1356.

    Google Scholar 

  4. Funayama S, Zhang G.-R, Nozoe S (1995) Kukoamine B, a spermine alkaloid from Lycium chinense. Phytochemistry 38: 1529–1531.

    Google Scholar 

  5. Han S-H, Lee H-H, Lee I-S, Moon Y-H, Woo E-R (2002) A new phenolic amide from Lycium chinenseMiller. Arch. Pharm. Res. 25: 433–437.

    Google Scholar 

  6. Kim SY, Choi Y-H, Huh H, Kim J, Kim YC, Lee HS (1997) New antihepatotoxic cerebroside from Lycium chinenseFruits. J. Nat. Prod. 60: 274–276.

    Google Scholar 

  7. Lajide L, Escoubas P, Mizutani J (1995) Termite antifeedant activity in Xylopia aethiopica. Phytochemistry 40: 1105–1112.

    Google Scholar 

  8. Lehrer R, Lichtenstein AK, Ganz T (1993) Defensins: antimicrobial and cytotoxic peptides of mammalian cells. Annu. Rev. Immunol. 11: 105–128.

    Google Scholar 

  9. Mclain N, Ascanio R, Baker C, Strohaver RA, Dolan JW (2000) Undecylenic acid inhibits morphogenesis of Candida albicans. Antimicrob. Agents Chemother. 44: 2873–2875.

    Google Scholar 

  10. Morota T, Sasaki H, Chin M, Sato T, Katayama N, Fukuyama K, Mitsuhashi H (1987) Studies on the crude drug containing the angiotensin I converting enzyme inhibitors(I) on the active principles of Lycium chinenseMiller. Shoyakugaku Zasshi. 41: 169–173.

    Google Scholar 

  11. Mühlenbeck U, Kortenbusch A, Barz W (1996) Formation of hydroxycinnamoyl-amides and a-hydroxyacetovanillone in cell cultures of Solanum khasianum. Phytochemistry 42: 1573–1579.

    Google Scholar 

  12. Negrel J, Pollet B, Lapierre C (1996) Ether-linked ferulic acid amides in natural and wound periderms of potato tuber. Phytochemistry 43: 1195–1199.

    Google Scholar 

  13. Sakakibara I, Katsuhara T, Ikeya Y, Hayashi K, Mitsuhashi H (1991) Cannabisin A, an arylnaphthalene lignanamide from fruits of Cannabis sativa. Phytochemistry 30: 3013–3016.

    Google Scholar 

  14. Sannai A, Fujimori T, Kato K (1982) Isolation of (-)-1,2-dehydro-a-cyperone and solavetivone from Lycium chinense. Phytochemistry 21: 2986–2987.

    Google Scholar 

  15. Santos LP, Boaventura MA, Oliveira AB, Cassady JM (1996) Grossamide and N-trans-caffeoyltyramine from Annona crassifloraseeds. Plant. Med. 62: 76. 1130

    Google Scholar 

  16. Terauchi M, Kanamori H, Nobuso M, Yahara S, Nohara T (1997) Detection and determination of antioxidative components in Lycium chinense. Nat. Med. 51: 387–391.

    Google Scholar 

  17. Terauchi M, Kanamori H, Nobuso M, Yahara S, Yamasaki K (1998) New acyclic diterpene glycoside, Lyciumoside IV-IX from Lycium chinenseMill. Nat. Med. 52: 167–171.

    Google Scholar 

  18. Wu Y-C, Chang G-Y, Ko F-N, Teng C-M (1995) Bioactive constituents from the stems of Annona montana. Plant. Med. 61: 146–149.

    Google Scholar 

  19. Yahara S, Shigeyama C, Ura T, Wakamatsu K, Yasuhara T, Nohara T (1993) Cyclic peptides, acyclic diterpene glycoside and other compounds from Lycium chinenseMill. Chem. Pharm. Bull. 41: 703–709.

    Google Scholar 

  20. Yoshihara T, Takamatsu S, Sakamura S (1978) Three new phenolic amides from the roots of eggplant (Solanum melongenaL.). Agric. Biol. Chem. 42: 623–627.

    Google Scholar 

  21. Yoshihara T, Yamaguchi K, Takamatsu S, Sakamura S (1981) A new lignan amide, grossamide from bell pepper (Capsicum annumvar. grossum). Agric. Biol. Chem. 45: 2593–2598.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lee, D.G., Park, Y., Kim, MR. et al. Anti-fungal effects of phenolic amides isolated from the root bark of Lycium chinense . Biotechnology Letters 26, 1125–1130 (2004). https://doi.org/10.1023/B:BILE.0000035483.85790.f7

Download citation

  • anti-fungal activity
  • trans-N-caffeoyltyramine
  • dihydro-N-caffeoyltyramine
  • trans-N-feruloyloctopamine
  • Lycium chinense
  • Solanaceae