Skip to main content
Log in

Substantial Genetic Effects Involved in Determination of Circulating Levels of Calciotropic Hormones in Human Pedigrees

  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

This paper reports the results of a series of univariate and bivariate statistical genetic analyses that were performed on a sample of nuclear and more complex pedigrees (N = 567 individuals) of an ethnically homogenous White population. Our major objectives were: (1) To quantitatively evaluate the extent and pattern of the putative genetic effects on plasma level variation and covariation of the intact parathyroid hormone (PTH) and 25-hydroxyvitamin D [25(OH)D]; (2) To evaluate the extent of the possible genetic covariation between each of the two calciotropic hormones and two important bone mass traits, namely radiographic hands bone mineral density (BMD) and cortical index (CI). Variance component analysis, as implemented in the statistical package FISHER unambigously demonstrated that in addition to age, genetic factors contribute significantly to interindividual variation of both calciotropic hormones (37.5% for PTH and 53.3% for 25(OH)D). Complex segregation analysis strongly suggested the involvement of major gene effects into the determination of 25(OH)D levels, but was not clear cut with respect to PTH. Significant correlations between circulating levels of study hormones were found (−0.146, P < 0.05 in men and −0.194, P < 0.01 in women). However, no genetic correlation was revealed between PTH and 25(OH)D plasma concentrations. Bivariate analyses showed that familial cross correlations between PTH and BMD and CI measured at the bones of the hand were consistently statistically significant, suggesting moderate, but detectable pleiotropic genetic effects. The corresponding genetic correlations were −0.461 ± 0.153 and −0.223 ± 0.113, respectively. Circulating levels of 25(OH)D showed neither phenotypic nor genetic correlation with any of the BMD or CI variation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aguado, P., del Campo, M. T., Garces, M. V., Gonzalez-Casaus, M. L., Bernad, M., Gijon-Banos, J., Mola, E. M., Torrijos, A., & Martinez, M. E. (2000). Low vitamin D levels in outpatient postmenopausal women from a rheumatology clinic in Madrid, Spain: Their relationship with bone mineral density. Osteoporos. Int. 11:739–744.

    PubMed  Google Scholar 

  • Boehnke, M., Moll, P. P., Lange, K., Weidman, W. H., & Kottke, B. A. (1986). Univariate and bivariate analyses of cholesterol and triglyceride levels in pedigrees. Am. J. Med. Genet. 23:775–792.

    PubMed  Google Scholar 

  • Bonofiglio, D., Maggiolini, M., Catalano, S., Marsico, S., Aquila, S., & Ando, S. (2001). Bone mineral density is inversely related to parathyroid hormone in adolescent girls. Horm. Metabol. Res. 33:170–174.

    Google Scholar 

  • Carmeliet, G., Verstuyf, A., Daci, E., & Bouillon, R. (1999). The Vitamin D hormone and its nuclear receptor: Genomic Mechanisms involved in bone biology. In Seibel, M. J., Robins, S. P., & Bilezikian, J. P. (eds.), Dynamics of Bone and Cartilage Metabolism, Academic Press, New York, pp. 217–231.

    Google Scholar 

  • Center, J. R., Nguyen, T. V., Sambrook, P. N., & Eisman, J. A. (1999). Hormonal and biochemical parameters in the determination of osteoporosis in elderly men. J. Clin. Endocrinol. Metabol. 84:3626–3635.

    Google Scholar 

  • Dawson-Hughes, B., Harris, S. S., & Dallal, G. E. (1997). Plasma calcidiol, season, and serum parathyroid hormone concentrations in healthy elderly men and women. Am. J. Clin. Nutr. 65:67–71.

    PubMed  Google Scholar 

  • Elston, R. C. (1981). Segregation analysis. Adv. Hum. Genet. 11:63–120.

    PubMed  Google Scholar 

  • Falconer, D. S., & Mackay, T. F. C. (1996). Introduction to Quantitative Genetics, Longman, England.

    Google Scholar 

  • Fitzpatrick, L. A., & Bilezikian, J. P. (1999). Parathyroid hormone: Structure, function and dynamic actions. In Seibel, M. J., Robins, S. P., & Bilezikian, J. P. (eds.), Dynamics of Bone and Cartilage Metabolism, Academic Press, New York, pp. 187–202.

    Google Scholar 

  • Fradinger, E. E., & Zanchetta, J. R. (2001). Vitamin D and bone mineral density in ambulatory women living in Buenos Aires, Argentina. Osteoporos. Int. 12:24–27.

    PubMed  Google Scholar 

  • Garnero, P., Arden, N. K., Griffiths, G., Delmas, P. D., & Spector, T. D. (1996). Genetic influence on bone turnover in postmenopausal twins. J. Clin. Endocrinol. Metabol. 81:140–146.

    Google Scholar 

  • Ginsburg, E. (1997). Program Package for Mendelian analysis of pedigree data (MAN) Version 5. Tel Aviv, Israel. Tech Rep Tel Aviv University Medical Faculty.

    Google Scholar 

  • Ginsburg, E., & Livshits, G. (1999). Segregation analysis of quantitative traits. A review. Ann. Hum. Biol. 26:103–129.

    PubMed  Google Scholar 

  • Gong, G., Johnson, M. L., Barger-Lux, M. J., & Heaney, R. P. (1999). Association of bone dimensions with a parathyroid hormone gene polymorphism in women. Osteoporos. Int. 9:307–311.

    PubMed  Google Scholar 

  • Guo, S. W., & Lange, K. (2000). Genetic mapping of complex traits: Promise, problems, and prospects. Theor. Popul. Biol. 57:1–11.

    PubMed  Google Scholar 

  • Harrela, M., Koistinen, H., Kaprio, J., Lejtovirta, M., Tuomilehto, J., Eriksson, J., Toivanen, L., Kosenvuo, M., Leinonen, R., Koistinen, R., & Seppala, M. (1996). Genetic and environmental components of interindividual variation in circulating levels of IGF-1, IGF-II, IGFPB-1, and IGFBP-3. J. Clin. Invest. 98:2612–2615.

    PubMed  Google Scholar 

  • Harris, M., Nguyen, T. V., Howard, G. M., Kelly, P. J., & Eisman, J. A. (1998). Genetic and environmental correlations between bone formation and bone mineral density: A twin study. Bone 22:141–145.

    PubMed  Google Scholar 

  • Hosoi, T., Miyao, M., Inoue, S., Hoshino, S., Shiraki, M., Orimo, H., & Ouchi, Y. (1999). Association study of parathyroid hormone gene polymorphism and bone mineral density in Japanese postmenopausal women. Calif. Tissue Int. 64:205–208.

    Google Scholar 

  • Hunter, D., DeLange, M., Snieder, H., MacGregor, A. J., Swaminathan, R., Thakker, R. V., & Spector, T. D. (2001). Genetic contribution to bone metabolism, calcium excretion, and vitamin D and parathyroid hormone regulation. J. Bone Miner. Res. 16:371–378.

    PubMed  Google Scholar 

  • Johnson, G. C. L., & Todd, J. A. (2000). Strategies in complex disease mapping. Curr. Opin. Genet. Dev. 110:330–334.

    Google Scholar 

  • Kalichman, L., Cohen, Z., Kobyliansky, E., & Livshits, G. (2002). Interrelationship between bone aging traits and main anthropological characteristics. Am. J. Hum. Biol. 14:380–390.

    PubMed  Google Scholar 

  • Karasik, D., Kobyliansky, E., & Livshits, G. (2000a). Ethnic and genetic factors in bone aging. In Siniarska, A., & Walanska, N. (eds.), Ecology of Aging, Kamla-Raj Enterprises, Delhi, India, pp. 167–190.

    Google Scholar 

  • Karasik, D., Ginsburg, E., Livshits, G., Pavlovsky, O., & Kobyliansky, E. (2000b). Evidence of major gene control of cortical bone loss in humans. Genet. Epidem. 19:410–421.

    Google Scholar 

  • Kelly, P. J., Morrison, N. A., Sambrook, P. N., Nguyen, T. V., & Eisman, J. A. (1995). Genetic influences on bone turnover, bone density and fracture. Eur. J. Endocrinol. 133:265–271.

    PubMed  Google Scholar 

  • Khosla, S. (2002). Androgens and androgenic progestins. In Marcus, R., Feldman, D., & Kesley, J. (eds.), Osteoporosis, Academic Press, San Diego, Chap. 76, CA, p. 709–724.

    Google Scholar 

  • Kleerekoper, M., Nelson, D. A., Peterson, E. L., Flynn, M. J., Pawluszka, A. S., Jacobsen, G., & Wilson, P. (1994). Reference data for bone mass, calciotropic hormones and biochemical markers of bone remodeling in older (55–75). Postmenopausal white and black women. J. Bone Miner Res. 9:1267–1276.

    PubMed  Google Scholar 

  • Lange, K., Boehnke, M., & Weeks, D. (1998). Program for pedigree analysis: Mendel, Fisher, Gene. Genet Epidem. 5:471–472.

    Google Scholar 

  • Lips, P., Duong, T., Oleksik, A., Black, D., Cummings, S., Cox, D., & Nickelsen, T. (2001). A global study of vitamin D status and parathyroid function in postmenopausal women with osteoporosis: Baseline data from the multiple outcomes of raloxifene evaluation clinical trial. J. Clin. Endocrinol. Metabol. 86:1212–1221.

    Google Scholar 

  • Livshits, G., Vainder, M., Graff, E., Blettner, M., Schettler, G., & Brunner, D. (1997). Tel-Aviv Heidelberg-Three-Generation offspring study: Genetic and environmental sources of plasma lipids, lipoproteins and apolipoproteins variation and covariation. Am. J. Hum. Biol. 9:357–370.

    Google Scholar 

  • Livshits, G., Karasik, D., & Seibel, M. J. (1999a). Statistical genetic analysis of plasma levels of vitamin D: Familial study. Ann. Hum. Genet. 3:429–439.

    Google Scholar 

  • Livshits, G., Karasik, D., Pavlovsky, O., & Kobyliansky, E. (1999b). Segregation analysis reveals a major gene effect in compact and cancellous bone mineral density in 2 populations. Hum. Biol. 71:155–72.

    PubMed  Google Scholar 

  • Livshits, G., Yakovenko, K., & Kobyliansky, E. (2000). Quantitative genetic analysis of circulating levels of biochemical markers of bone formation. Am. J. Med. Genet. 94:324–331.

    PubMed  Google Scholar 

  • Livshits, G., Karasik, D., & Kobyliansky, E. (2002). Complex segregation analysis of the phalanges and their age related changes. J. Bone Miner. Res. 17:1–10.

    PubMed  Google Scholar 

  • Manolagas, S. C. (2000). Birth and death of bone cells: Basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endocr. Rev. 21:115–137.

    PubMed  Google Scholar 

  • Nakamura, K., Nashimoto, M., Hori, Y., & Yamamoto, M. (2000). Serum parathyroid hormone in healthy Japanese women in relation to serum 25–hydroxyvitamin D. Int. J. Vitam. Nutr. Res. 70:287–292.

    PubMed  Google Scholar 

  • Otremski, I., Karasik, D., & Livshits, G. (2000). Genetic variation and covariation of parathyroid hormone levels and bone density in human populations. Calif. Tissue Int. 66:168–175.

    Google Scholar 

  • Pantsulaia, I., Trofimov, S., Kobyliansky, E., & Livshits, G. (2002). Pedigree based quantitative genetic analysis of interindividual variation in circulating levels of IGFBP-3. J. Bone Miner. Metab. 20:156–163.

    PubMed  Google Scholar 

  • Pavlovsky, O., & Kobyliansky, E. (1999). Population Biology of Human Aging, Angelo Pontecorboli Editore, Publishing House, Firenze, Italy, pp. 1–152.

    Google Scholar 

  • Plato, C. C., Fox, K. M., & Tobin, J. D. (1994). Skeletal changes in human aging. In Crews, D. E., & Garruto, R. M. (eds.), Biological Anthropology and Aging, Oxford University Press, New York, pp. 272–300.

    Google Scholar 

  • Tischkov, V. A. (1994). People of Russia. Encyclopedia, Moscow, Great Russian Encyclopedia Publishing House. (in Russian).

    Google Scholar 

  • Tokita, A., Kelly, P. J., Nguyen, T. V., Qi, J. C., Morrison, N. A., Risteli, L., Risteli, J., Sambrook, P. N., & Eisman, J. A. (1994). Genetic influences on type I collagen synthesis and degradation: Further evidence for genetic regulation of bone turnover. J. Clin. Endocrinol. Metabol. 78:1461–1465.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Livshits, G., Yakovenko, C. & Seibel, M. Substantial Genetic Effects Involved in Determination of Circulating Levels of Calciotropic Hormones in Human Pedigrees. Biochem Genet 41, 269–289 (2003). https://doi.org/10.1023/B:BIGI.0000006029.01736.64

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:BIGI.0000006029.01736.64

Navigation