Behavior Genetics

, Volume 34, Issue 1, pp 41–50 | Cite as

A Genetic Investigation of the Covariation Among Inspection Time, Choice Reaction Time, and IQ Subtest Scores

  • Michelle Luciano
  • Margaret J. Wright
  • Gina M. Geffen
  • Laurie B. Geffen
  • Glen A. Smith
  • Nicholas G. Martin

Abstract

Information processing speed, as measured by elementary cognitive tasks, is correlated with higher order cognitive ability so that increased speed relates to improved cognitive performance. The question of whether the genetic variation in Inspection Time (IT) and Choice Reaction Time (CRT) is associated with IQ through a unitary factor was addressed in this multivariate genetic study of IT, CRT, and IQ subtest scores. The sample included 184 MZ and 206 DZ twin pairs with a mean age of 16.2 years (range 15–18 years). They were administered a visual (π-figure) IT task, a two-choice RT task, five computerized subtests of the Multidimensional Aptitude Battery, and the digit symbol substitution subtest from the WAIS-R. The data supported a factor model comprising a general, three group (verbal ability, visuospatial ability, broad speediness), and specific genetic factor structure, a shared environmental factor influencing all tests but IT, plus unique environmental factors that were largely specific to individual measures. The general genetic factor displayed factor loadings ranging between 0.35 and 0.66 for the IQ subtests, with IT and CRT loadings of −0.47 and −0.24, respectively. Results indicate that a unitary factor is insufficient to describe the entire relationship between cognitive speed measures and all IQ subtests, with independent genetic effects explaining further covariation between processing speed (especially CRT) and Digit Symbol.

Inspection time Choice RT IQ subtests processing speed multivariate genetic modeling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. Barrett, G. V., Alexander, R. A., Doverspike, D., Cellar, D., and Thomas, J. C. (1982). The development and application of a computerized information-processing test battery. Appl. Psychol. Measurement 6:13-29.Google Scholar
  2. Burns, N. R., and Nettelbeck, T. (2003). Inspection time in the structure of cognitive abilities: Where does IT fit. Intelligence 31:237-255.Google Scholar
  3. Cooper, C., Kline, P., and Maclaurin-Jones, L. (1986). Inspection time and primary abilities. Br. J. Educ. Psychol. 56:304-308.Google Scholar
  4. Crawford, J. R., Deary, I. J., Allan, K. M., and Gustafsson, J. (1998). Evaluating competing models of the relationship between inspection time and psychometric intelligence. Intelligence 26:27-42.Google Scholar
  5. Deary, I. J. (1993). Inspection time and WAIS-R IQ subtypes: A confirmatory factor analysis study. Intelligence 17:223-236.Google Scholar
  6. Detterman, D. K. (1986). Human intelligence is a complex system of separate processes. In R. J. Sternberg and D. K. Detterman (eds.), What Is Intelligence? Contemporary Viewpoints on Its Nature and Definition (pp. 57-62). Norwood, NJ: Ablex.Google Scholar
  7. Eaves, L. J., Heath, A. C., and Martin, N. G. (1984). A note on the generalized effects of assortative mating. Behav. Genet. 14:371-376.Google Scholar
  8. Evans, G., and Nettelbeck, T. (1993). Inspection time: A flash mask to reduce apparent movement effects. Person. Individ. Diff. 15: 91-94.Google Scholar
  9. Findlay, J. M. (1978). Estimates on probability functions: A more virulent PEST. Percep. Psychophysics 23:181-185.Google Scholar
  10. Jackson, D. N. (1998). Multidimensional Aptitude Battery II. Port Huron, MI: Sigma Assessment Systems, Inc.Google Scholar
  11. Jensen, A. R. (1993). Spearman's g: Links between psychometrics and biology. In F. M. Crinella and J. Yu (eds.), Brain Mechanisms: Papers in Memory of Robert Thompson (Vol. 702, pp. 103-130). New York: The New York Academy of Sciences.Google Scholar
  12. Jensen, A. R. (1998). The g Factor. Westport, CT: Praeger.Google Scholar
  13. Kranzler, J. H., and Jensen, A. R. (1991). The nature of psychometric g: Unitary process or a number of independent processes? Intelligence 15:397-422.Google Scholar
  14. Larson, G. E., and Saccuzzo, D. P. (1989). Cognitive correlates of general intelligence: Toward a process theory of g. Intelligence 13:5-31.Google Scholar
  15. Luciano, M., Wright, M. J., Geffen, G. M., Geffen, L. B., Smith, G. A., Evans, D. M., and Martin, N. G. (in press). A genetic two-factor model of the covariation among a subset of Multidimensional Aptitude Battery and WAIS-R subtests. Intelligence.Google Scholar
  16. Luciano, M., Smith, G. A., Wright, M. J., Geffen, G. M., Geffen, L. B., and Martin, N. G. (2001a). On the heritability of inspection time and its covariance with IQ: A twin study. Intelligence 29:443-457.Google Scholar
  17. Luciano, M., Smith, G. A., Wright, M. J., Geffen, G. M., Geffen, L. B., and Martin, N. G. (2001b). Genetic covariance among measures of information processing speed, working memory, and IQ. Behav. Genet. 31:581-592.Google Scholar
  18. Mackintosh, N. J. (1998). IQ and Human Intelligence. New York: Oxford University Press.Google Scholar
  19. Neale, M. C., Boker, S. M., Xie, G., and Maes, H. H. (1999). Mx: Statistical Modeling (5th ed.). Richmond, VA: Department of Psychiatry, University of Virginia.Google Scholar
  20. Nettelbeck, T., and Rabbitt, P. M. A. (1992). Aging, cognitive performance, and mental speed. Intelligence 16:189-205.Google Scholar
  21. Pentland, A. (1980). Maximum likelihood estimation: The best PEST. Percep. Psychophysics 28:377-379.Google Scholar
  22. Petrill, S. A., Luo, D., Thompson, L. A., and Detterman, D. K. (1996). The independent prediction of general intelligence by elementary cognitive tasks: Genetic and environmental influences. Behav. Genet. 26:135-147.Google Scholar
  23. Posthuma, D., de Geus, E. J. C., and Boomsma, D. I. (2001). Perceptual speed and IQ are associated through common genetic factors. Behav. Genet. 31:593-602.Google Scholar
  24. Rijsdijk, F. V., Vernon, P. A., and Boomsma, D. I. (1998). The genetic basis of the relation between speed-of-informationprocessing and IQ. Behav. Brain Res. 95:77-84.Google Scholar
  25. Saccuzzo, D. P., Johnson, N. E., and Guertin, T. L. (1994). Information processing in gifted versus nongifted African American, latino, filipino, and white children: Speeded versus nonspeeded paradigms. Intelligence 19:219-243.Google Scholar
  26. Vernon, P. A. (1983). Speed of information processing and general intelligence. Intelligence 7:53-70.Google Scholar
  27. Vernon, P. A. (1989). The heritability of measures of speed of information-processing. Person. Individ. Diff. 10:573-576.Google Scholar
  28. Vigil-Colet, A., Perez-Olle, J., and Fernandez, M. (1997). The relationships of basic information processing measures with fluid and crystallized intelligence. Person. Individ. Diff. 23: 55-65.Google Scholar
  29. Wechsler, D. (1981). Wechsler Adult Intelligence Scale–Revised Manual. New York: The Psychological Corporation.Google Scholar
  30. Wright, M. J., De Geus, E., Ando, J., Luciano, M., Posthuma, D., Ono, Y., Hansell, N. K., Van Baal, C., Hiraishi, K., Hasegawa, T., Smith, G., Geffen, G., Geffen, L., Kanba, S., Miyake, A., Martin, N., and Boomsma, D. (2001). Genetics of cognition: Outline of collaborative twin study. Twin Res. 4:48-56.Google Scholar
  31. Zhu, G., Duffy, D. L., Eldridge, A., Grace, M., Mayne, C., O'Gorman, L., Aitken, J. F., Neale, M., Hayward, N. K., Green, A. C., and Martin, N. G. (1999). A major quantitative-trait locus for mole density is linked to the familial melanoma gene CDKN2A: A maximum-likelihood combined linkage and association analysis in twins and their sibs. Am. J. Human Genet. 65:483-492.Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • Michelle Luciano
    • 1
  • Margaret J. Wright
    • 1
  • Gina M. Geffen
    • 2
  • Laurie B. Geffen
    • 2
  • Glen A. Smith
    • 1
  • Nicholas G. Martin
    • 1
  1. 1.Queensland Institute of Medical ResearchBrisbaneAustralia
  2. 2.University of QueenslandBrisbaneAustralia

Personalised recommendations