Skip to main content
Log in

Mechanisms Underlying Diquertin-Mediated Regulation of Neutrophil Function in Patients with Non-Insulin-Dependent Diabetes Mellitus

  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

Abstract

We studied the effects of dihydroquercetin (3.3.4.5.7-pentahydroxyflavanone, a new Russian patented preparation) on functional activity of polymorphonuclear neutrophils from patients with non-insulin-dependent diabetes mellitus. Flavonoids (quercetin and its derivative dihydroquercetin) dose-dependently suppressed generation of anion radicals and hypochlorous acid and production of malonic dialdehyde during oxidation of neutrophil membranes. Dihydroquercetin decreased activities of protein kinase C and myeloperoxidase in activated polymorphonuclear neutrophils and could bind transition metals (Fe2+). These properties determine the ability of dihydroquercetin to decrease in vitro functional activity of polymorphonuclear neutrophils from patients with non-insulin-dependent diabetes mellitus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Ya. A. Aleksandrovskii, Biokhimiya, 63, No. 11, 1470–1479 (1998).

    Google Scholar 

  2. V. K. Kolkhir, N. A. Tyukavkina, and V. A. Bykov, Khim.-Farm. Zh., No. 9, 61–64 (1995).

  3. A. A. Kubatiev, Z. T. Yadigarova, N. A. Tyukavkina, et al., Vopr. Biol. Med. Farm. Khim., No. 3, 47–50 (1999).

  4. W. D. Blackburn, L. W. Neck, and R. W. Wallace, Biochem. Biophys. Res. Commun., 144, No. 3, 1229–1236 (1987).

    Google Scholar 

  5. G. Caimi, D. Sinagra, B. Canino, et al., Acta Diabetol., 37, No. 1, 9–12 (2000).

    Google Scholar 

  6. M. Cantero, T. Parra, and J. Conejo, Diabetes Care, 21, 326–327 (1998).

    Google Scholar 

  7. A. Ceriello, Diabet. Med., 14, S45–S49 (1997).

    Google Scholar 

  8. J. Pincemail, C. Deby, A. Thirion, et al., Experentia, 44, No. 5, 450–453 (1988).

    Google Scholar 

  9. J. Robak and R. Gryglewski, Pol. J. Pharmacol., 48, No. 6, 554–564 (1996).

    Google Scholar 

  10. R. Shurtz-Swirski, S. Sela, A. Herskovits, et al., Diabetes Care, 24, No. 1, 104–110 (2001).

    Google Scholar 

  11. O. Takemura, Y. Banno, and Y. Nozawa, Biochem. Pharmacol., 53, No. 10, 1503–1510 (1997).

    Google Scholar 

  12. M. Tordera, M. Ferrandiz, and M. J. Alcaraz, Z. Naturforsh [C], 49, Nos. 3-4, 235–240 (1994).

    Google Scholar 

  13. S. J. Weiss, R. Klein, A. Slivka, and M. Wei, J. Clin. Invest., 70, 598–607 (1982).

    Google Scholar 

  14. K. Yagi, Biochem. Med., 15, 212–216 (1976).

    Google Scholar 

  15. M. Zielinska, A. Kostrewa, E. Ignatowicz, and J. Budzianowski, Acta Biochim. Pol., 48, No. 1, 183–189 (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fedosova, N.F., Alisievich, S.V., Lyadov, K.V. et al. Mechanisms Underlying Diquertin-Mediated Regulation of Neutrophil Function in Patients with Non-Insulin-Dependent Diabetes Mellitus. Bulletin of Experimental Biology and Medicine 137, 143–146 (2004). https://doi.org/10.1023/B:BEBM.0000028124.90768.50

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:BEBM.0000028124.90768.50

Navigation