Analysis and Estimation of the States of Special Jump Markov Processes. I. Martingale Representation


The first part of this paper was devoted to a class of continuous-time jump processes generalizing the finite-state Markov processes. Main characteristics of this process such as the transition probabilities, infinitesimal generator, and so on were established. Processes of this class were proved to be solutions of linear differential equations with a martingale in the right-hand side. Stochastic analysis of a hidden Markov model of evolution of risky assets was presented as an example.

This is a preview of subscription content, access via your institution.


  1. 1.

    Walter, J., Stochastické Modely v Ekonomii, Praha: Nakladatelstvi Technické eliteratury, 1970. Translated under the title Stokhasticheskie modeli v ekonomike, Moscow: Statistika, 1976.

    Google Scholar 

  2. 2.

    Shiryaev, A.N., Osnovy stokhasticheskoi finansovoi matematiki: fakty, modeli (Fundamentals of Stochastic Financial Mathematics: Facts and Models), Moscow: Fazis, 1998, vol. 1.

    Google Scholar 

  3. 3.

    Runggaldier, W.J., Jump Diffusion Models, in Handbook of Heavy Tailed Distributions in Finance, Rachev, S.T., Ed., Amsterdam: Elesevier, 2003, pp. 169-209.

    Google Scholar 

  4. 4.

    Cvitani?, J., Liptser, R.Sh., and Rozovskii, B., Tracking Volatility, Proc. Conf. Dec. Contr., 2000, pp. 1189-1193.

  5. 5.

    Elliott, R.J., Malcolm, W.P., and Tsoi, A., HMM Volatility Estimation, Proc. 41st IEEE Conf. Dec. Contr., Las Vegas, 2002, pp. 398-404.

  6. 6.

    Altman, E., Avrachenkov, K., and Barakat, C., TCP in Presence of Burstly Losses, Performance Evaluat., 2000, vol. 42, pp. 129-147.

    Google Scholar 

  7. 7.

    Gikhman, I.I. and Skorokhod, A.V., Teoriya sluchainykh protsessov (Random Process Theory), Moscow: Nauka, 1973, vol. 2.

    Google Scholar 

  8. 8.

    Di Masi, G.B. and Kitsul, P.I., Backward Representation for Nonstationary Markov Processes with Finite State Space, Syst. Control Lett., 1994, vol. 22, pp. 445-450.

    Google Scholar 

  9. 9.

    Davis, M.H.A., Piecewise-deterministic Markov Processes: A General Class of Non-diffusion Stochastic Models, J. Royal Statist. Soc., 1984, vol. 46, no. 3, pp. 353-388.

    Google Scholar 

  10. 10.

    Davis, M.H.A., Markov Models and Optimization, London: Chapman & Hall, 1993.

    Google Scholar 

  11. 11.

    Mariton, M., Jump Linear Systems in Automatic Control, New York: Decker, 1990.

    Google Scholar 

  12. 12.

    Elliott, R.J., Aggoun, L., and Moore, J.B., Hidden Markov Models: Estimation and Contro, Berlin: Springer, 1995.

    Google Scholar 

  13. 13.

    Miller, B.M. and Runggaldier, W.J., Kalman Filtering for Linear Systems with Coefficients Driven by a Hidden Markov Jump Process, Syst. Control Lett., 1997, vol. 31, pp. 93-102.

    Google Scholar 

  14. 14.

    Elliott, R.J., Stochastic Calculus and Applications, New York: Springer, 1982. Translated under the title Stokhasticheskii analiz i ego prilozheniya, Moscow: Mir, 1986.

    Google Scholar 

  15. 15.

    Liptser, R.Sh. and Shiryaev, A.N., Statistika sluchainykh protsessov (nelineinaya fil'tratsiya i smezhnye voprosy), Moscow: Nauka, 1974. Translated under the title Statistics of Random Processes, Berlin: Springer, 1978.

    Google Scholar 

  16. 16.

    Mel'nikov, A.V., Volkov, S.N., and Nechaev, M.L., Matematika finansovykh obyazatel'stv (Mathematics of Financial Obligations), Moscow: Gos. Univ., Vysshaya Shkola Ekonomiki, 2001.

    Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Borisov, A.V. Analysis and Estimation of the States of Special Jump Markov Processes. I. Martingale Representation. Automation and Remote Control 65, 44–57 (2004).

Download citation


  • Differential Equation
  • Mechanical Engineer
  • System Theory
  • Markov Model
  • Hide Markov Model