Skip to main content
Log in

Self-Regulating Supernova Heating in Interstellar Medium Simulations

  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

Numerical simulations of the multi-phase interstellar medium have been carried out, using a 3D, nonlinear, magnetohydrodynamic, shearing-box model, with random motions driven by supernova explosions. These calculations incorporate the effects of magnetic fields and rotation in 3D; these play important dynamical roles in the galaxy, but are neglected in many other simulations. The supernovae driving the motions are not arbitrarily imposed, but occur where gas accumulates into cold, dense clouds; their implementation uses a physically motivated model for the evolution of such clouds. The process is self-regulating, and produces mean supernova rates as part of the solution. Simulations with differing mean density show a power law relation between the supernova rate and density, with exponent 1.7; this value is within the range suggested from observations (taking star formation rate as a proxy for supernova rate). The global structure of the supernova driven medium is strongly affected by the presence of magnetic fields; e.g. for one solution the filling factor of hot gas is found to vary from 0.19 (with no field) to 0.12 (with initial mid-plane field B 0 = 6 μG).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarson, G.R., Shukurov, A., Nordlund, Å. et al. Self-Regulating Supernova Heating in Interstellar Medium Simulations. Astrophysics and Space Science 292, 267–272 (2004). https://doi.org/10.1023/B:ASTR.0000045026.24564.bc

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:ASTR.0000045026.24564.bc

Navigation