Advertisement

Aquaculture International

, Volume 12, Issue 3, pp 299–320 | Cite as

Pagellus erythrinus (Common Pandora): A Promising Candidate Species for Enlarging the Diversity of Aquaculture Production

  • S. D. Klaoudatos
  • G. Iakovopoulos
  • D. S. Klaoudatos
Article

Abstract

The euryhaline species Pagellus erythrinus was investigated for potential use in aquaculture. The research focused on the biological aspects of the species examining its adaptability in captivity, examining reproduction, brood stock construction, larval rearing and on-growing of the fingerlings, produced in cage culture under different diets and feeding regimes. Natural spawning resulted in the production of 150,000 viable eggs/kg with an average hatching rate of 85%, whereas spawning induced with injection of HCG hormone (500 and 250 IU/kg) produced 16,140 and 29,940 viable eggs/kg for the high and low dosage, respectively, with an average hatching rate of 75%. The culture of the fingerlings in floating cages in the region of Galaxidi (east central Greece) is also described. The results are encouraging in terms of a possible intensive culture of the species, but nonetheless further research on the reproduction and the larval rearing of the species is imperative.

Aquaculture Larval rearing On growing. Pagellus erythrinus 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abi-Ayad, A. and Kestemont, P. 1994. Comparison of the nutritional status of goldfish (Carassius auratus) larvae fed with live, mixed or dry diet. Aquaculture 128: 163-176.CrossRefGoogle Scholar
  2. Andaloro, F. and Giarritta, P.S. 1985. Contribution to the knowledge of the age, growth and feeding of pandora, Pagellus erythrinus (L. 1758) in the Sicilian Channel. Fisheries Report 336: 85-87.Google Scholar
  3. Basurco, B. and Abellan, E. 1999. Finfish species diversification in the context of Mediterranean marine fish farming development. In: Abellan, E. and Basurco, B (eds). Marine Finfish Species Diversification and Prospects in Mediterranean Aquaculture, CIHEAM-IAMZ, Zaragoza, pp. 9-25.Google Scholar
  4. Bauchot, M.L. and Hureau, J.C. 1986. Sparidae. In: Whitehead, P.J.P., Bauchot, M.L., Hureau, J.C., Nielsen, J. and Tortonese, E. (eds.), Fishes of the North-Eastern Atlantic and Mediterranean. UNESCO, Paris, pp. 883-907.Google Scholar
  5. Boehlert, G.W. and Yoklavich, M.M., 1984. Carbon assimilation as a function of ingestion rate in larval Pacific herring, Clupea harengus pallasi Valenciennes. Journal of Experimental Marine Biology and Ecology 79: 251-262.CrossRefGoogle Scholar
  6. Bromley, P.J., Howell, B.R. 1983. Factors influencing the survival and growth of turbot larvae, Scophthalmus maximus L., during the change from live to compound feeds. Aquaculture 31: 31-40.CrossRefGoogle Scholar
  7. Cejas, J., Jerez, S., Santamaria, F. J. and Samper, M. 1993a. Estudios preliminaries de la reproduccion y cultivo larvario de la breca (Pagellus erythrinus) en cautividad. In: Cervino, A. Landin, A., Coo, A., Guerra, A. and Torre, M. (eds.), Actas. IV Congreso Nacional de Acuicultura, Villagarcia de Arosa, Spain, pp. 61-65.Google Scholar
  8. Cejas, J., Samper, M., Jerez, S., Fores, R. and Villamandos, J. 1993b. Culture prospectives of common pandora (Pagellus erythrinus) and white sea bream (Diplodus sargus); Preliminary growth results in comparison with sea bream (Sparus aurata). Pontevedra-Spain Centro de Investigaciones Marinas, pp. 127-132.Google Scholar
  9. Dowd, C.E. and Houde, E.D. 1980. Combined effects of prey concentration and photoperiod on survival and growth of larval sea bream, Archosargus rhomboidalis (Sparidae). Marine Ecology Progress Series 3: 154-181.Google Scholar
  10. Fernandez-Palacios, H., Montero, D., Socorro, J., Izquierdo, M.S. and Vergara, J.M. 1994. First studies on spawning, embryonic and larvae development of Dentex dentex (Rafinesque, 1810) (Osteichthyes) under controlled conditions. Aquaculture 122: 63-73.CrossRefGoogle Scholar
  11. Fielder, D.S., Purser, G.J. and Battaglene, S.C. 2000. Effect of rapid changes in temperature and salinity on availability of the rotifers Brachionus rotundiformis and Brachionus plicatilis. Aquaculture 189: 85-99CrossRefGoogle Scholar
  12. Fukusho, K. 1983. Present status and problems in culture of the rotifer Brachionus plicatilis for fry production of marine fishes in Japan. In: Fuentes, H.R., Castillo, J.G., Disalvo, L.H. (eds.), Advances and Perspectives in Aquaculture. Proceedings of a Symposium, Universidad del Norte, Coquimbo, Chile, September, pp. 361-374.Google Scholar
  13. Fukusho, K. 1989. Biology and mass production of the rotifer, Brachionus plicatilis. International Journal Aquative Fish Technology 1: 232-240.Google Scholar
  14. Ghorbel, M. 1981. Contribution a l'etude morphologique et biologique des poisons Pagellus et Lithognathus de Tunisie; etude dynamique preliminaire du pageau dans le golf de Gabes. Rapport de stage, DEA de biologie marine et d'Oceanographique, Faculte des Sciences de Tunis, 139 pp.Google Scholar
  15. Girardin, M. 1978. GFCM Working party on resource appraisal and fishery statistics. Report of the technical Consultation on stock assessment in the Balearic and Gulf of Lions Statistical Division. FAO Fisheries Report, No. 227, Rome, 125 pp.Google Scholar
  16. Girardin, M. and Quignard, J.P. 1985. Croissance de Pagellus erythrinus (Pisces: Teleosteens, Sparidae) dans le Golfe du Lion. Cybium 9(4): 359-374.Google Scholar
  17. Girin M. 1982. The Sparidae: a warmwater finfish family with world-wide mariculture potential. In: Stickney, R.R. and Meyers, S.P. (eds.), Proceedings of the Warmwater Fish Culture Workshop, Luisiana State University, Baton Rouge, Vol. 3, pp. 3-14.Google Scholar
  18. Hardy, R.W. 1999. Collaborative opportunities between fish nutrition and other disciplines in aquaculture: an overview. Aquaculture 177: 217-230.CrossRefGoogle Scholar
  19. Holt, G.J. 1993. Feeding larval red drum on microparticulate diets in a closed recirculating water system. Journal of the World Aquaculture Society 24: 225-230.Google Scholar
  20. Hunter, J.R. 1980. The feeding behavior and ecology of marine fish larvae. In: Bardach, J.E., Magnuson, J.J., May, R.C. and Reinhart, J.M. (eds.), Fish Behavior and Its Use in the Capture and Culture of Fishes. ICLARM Conf. Proc. 5, Manila, Philippines, pp. 287-330.Google Scholar
  21. Hussain, N., Akatsu, S. and El-Zahr, C. 1981. Spawning, egg and early larval development, and growth of Acanthopagrus cuvieri (Sparidae). Aquaculture 22: 125-136.CrossRefGoogle Scholar
  22. Kafuku, T., Ikenoue, H. 1983. Modern methods of aquaculture in Japan, Developments of Aquaculture and Fisheries Science, 11, Kodansha Tokyo, Elsevier, Amsterdam, 216 pp.Google Scholar
  23. Kanazawa, A., Koshio, S. and Teshima, S.L. 1989. Growth and survival of larval red seabream Pagrus major and Japanese flounder Paralichthys olivaceus fed microbound diets. Journal of the World Aquaculture Society 20: 31-37.Google Scholar
  24. Kolkovski, S., Tandler, A., Kissil, G. and Gertler, A. 1993. The effect of dietary exogenous digestive enzymes on ingestion, assimilation, growth and survival of gilthead seabream (Sparus aurata, Sparidae, Linnaeus) larvae. Fish Physiology Biochemistry 12: 203-209.Google Scholar
  25. Korunuma, K. and Fukusho, K. 1987. Rearing of Marine Fish Larvae in Japan. IDRC, Ottawa, pp 109.Google Scholar
  26. Larraneta, M.G. 1964. Sobre la biologia de Pagellus erythrinus (L.) especialmente de las costas de Castellon. Investation Pesquera. 27: 121-146.Google Scholar
  27. Larraneta, M.G. 1967. Crecimiento de Pagellus erythrinus de las costas de Castellon. Investigation Pesquera 31(2): 185-258.Google Scholar
  28. Leu, M.Y., Liou, C.H. and Wu, C.H. 1991. Feasibility of using micro-coated diet fed to larval yellow-finned black porgy, Acanthopagrus latus (Houttuyn). Journal Fisheries Society, Taiwan, 18: 287-294.Google Scholar
  29. Livadas, R.J. 1989. A study of the biology and population dynamics of Pandora (Pagellus erythrinus L. 1758), family Sparidae, in the Seas of Cyprus. FAO Fisheries Report 412: 58-75.Google Scholar
  30. Lloris, D., Allue, C., Rucabado, J. and Bas, C. 1977. Fichas de identificacion de especies. Atlantico Oriental. Estrecho de Gibraltar-Cabo Verde (zona CECAF 34). Datos Informativos del Instituto de Investigaciones Pesqueras, Barcelona.Google Scholar
  31. Lo Paro, G., Greco, S. and Cammaroto, S. 1993. Comparison of intensive rearing of Sparidae (Perciformes, Osteichthyes) in temperate waters. From discovery to commercialization Eur. Aquac. Soc. No 19.Google Scholar
  32. Lubzens, L., 1987. Raising rotifers for use in aquaculture. Hydrobiologia 147: 245-255.Google Scholar
  33. Lubzens, E., Tandler, A. and Minkoff, G. 1989. Rotifers as food in aquaculture. Hydrobiologia 186/187: 387-400.Google Scholar
  34. Mendez, E., Anastasiadis, P., Kentouri, M., Pavlidis, M. and Divanach P. 1995. Preliminary data on spawning activity of five Mediterranean teleost species kept in captivity, in Crete (Greece). In: Castello, F. and Calderer, A. (eds.), Actas V Congreso Nacional de Acuicultura, San Carles de la Rapita, Spain, pp. 398-403.Google Scholar
  35. Munilla-Moran, R., Stark, J.R., Barbour, A. 1990. The role of exogenous enzymes in digestion in cultured turbot larvae (Scophthalmus maximus L.). Aquaculture 88: 337-350.CrossRefGoogle Scholar
  36. Mytilineou, C., 1987. Preliminary study of the reproductive cycle and hermaphroditism of Pagellus erythrinus L. in the Patraikos and Korinthiakos Gulfs and the Ionian Sea. Proceedings of the 2nd Hellenic Symposium on Oceanography and Fisheries. (In Hellenic with English abstract), pp. 551-557.Google Scholar
  37. Mytilineou, C. 1989. Donnees biologiques sur le pageot, Pagellus erythrinus, des cotes orientales de la Grece centrale. FAO Fisheries Report 412: 77-82.Google Scholar
  38. New, M.B. 1991. Turn of the millennium aquaculture. Navigating troubled waters or ridding the crest of the wave?. World Aquaculture 22(3): 28-49.Google Scholar
  39. Olsen, Y., Reitan, K.I., Walso, O. 1992. Larval feed costs in fry production of marine species. SINTEF, Trondheim, STF21 A92027, 21 pp.Google Scholar
  40. Pajuelo, J.G. and Lorenzo, J.M. 1998. Population biology of the common pandora Pagellus erythrinus (Pisces: Sparidae) off the Canary Islands. Fisheries Research 36: 75-86.CrossRefGoogle Scholar
  41. Papaconstantinou, C., Mytilineou, C. and Panos, T. 1988. Aspects of the life history and fishery of red Pandora, Pagellus erythrinus (Sparidae) off Western Greece, Cybium 13 (2): 159-167.Google Scholar
  42. Pastor, E., Rieta, F., Pou, S., Grau, A.M. and Grau, A. 1995. Summary of investigations on reproduction and larval rearing of common dentex Dentex Dentex L. ICES Marine Science Symposium 201: 148-152.Google Scholar
  43. Person-Le Ruyet, J. and Verillaud, P. 1980. Techniques d'elevage intensif de la daurade doree (Sparus aurata L.) de la naissance a l'age de deux mois. Aquaculture 20: 351-370.CrossRefGoogle Scholar
  44. Person Le Ruyet, J., Alexandre, J.C., Thebaud, L. and Mugnier, C. 1993. Marine fish larvae feeding: Formulated diets or live prey? Journal of World Aquaculture Society 24: 211-224.Google Scholar
  45. Rosenlund, G., Stoss, J. and Talbot, C. 1997. Co-feeding marine fish larvae inert and live diets. Aquaculture 155: 183-191.CrossRefGoogle Scholar
  46. Santos, M.N., Monteiro, C.C. and Erzini, K. 1995. Aspects of the biology and gillnet selectivity of the axillary seabream (Pagellus acarne, Risso) and common pandora (Pagellus erythrinus, Linnaeus) from the Algarve (South Portugal). Fisheries Research 23: 223-236.CrossRefGoogle Scholar
  47. Sargent, J.R., McEnvoy, L.A. and Bell, J.G. 1997. Requirements, presentation and sources of polyunsaturated fatty acids in marine fish larval feeds. Aquaculture 155: 117-128.CrossRefGoogle Scholar
  48. Segers, H. 1995. Nomenclatural consequences of some recent studies on Brachionus plicatilis (Rotifera, Brachionidae). Hydrobiologia 313: 121-122.Google Scholar
  49. Snell, T.W. and Carillo, K. 1984. Body size variation among strains of the rotifer Brachionus plicatilis. Aquaculture 37: 359-367.CrossRefGoogle Scholar
  50. Stephanis, J. 1996. Mediterranean aquaculture trends in production, markets and marketing. Handbook of Contributions Presented at the International Workshop on Seabass and Seabream Culture: Problems and Prospects, Verona, Italy, October 16-18, pp. 7-23.Google Scholar
  51. Stephanis, J. and Divanach, P. 1993. Farming of Mediterranean finfish species. Present status and potentials. World Aquaculture'93-From Discovery to Commercialization. European Aquaculture Society, Oostende, Belgium, p. 426, Special Publication 19.Google Scholar
  52. Tandler, A. and Mason, C. 1984. The use of C labeled rotifers Brachionus plicatilis in the larvae of gilthead seabream Sparus aurata: measurements of the effect of rotifer concentration, the lighting regime and seabream larval age on their rate of rotifer ingestion. In: Rosenthal, H. and Sarig, S. (eds.), Research on Aquaculture. Proceedings of the Second Seminar of the German-Israeli Cooperation in Aquaculture Research, 5-6 March 1984, Hamburg, Germany. Spec. Publ. Eur. Maricult. Soc. 8, pp. 241-259.Google Scholar
  53. Tandler, A. and Sherman, R. 1981. Food organism concentration, environmental temperature and survival of the gilthead bream Sparus aurata larvae. In: Rosenthal, H. and Oren, O.H. (eds.), Research on Intensive Aquaculture. Proceedings of a German-Israeli Seminar on Aquaculture, 10-11 March 1980, Shefayim, Israel. Spec. Publ. Eur. Maricult. Soc. 6, pp. 237-248.Google Scholar
  54. Walford, J. and Lam, T.J. 1993. Development of digestive tract and proteolytic enzyme activity in seabass (Lates calcarifer) larvae and juveniles. Aquaculture 109: 187-205.CrossRefGoogle Scholar
  55. Zambonino Infante, J.L. and Cahu, C. 1994. Development and response to a diet change of some digestive enzymes in seabass (Dicentrarchus labrax) larvae. Fish Physiology and Biochemistry 12: 399-408.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • S. D. Klaoudatos
    • 1
  • G. Iakovopoulos
    • 2
  • D. S. Klaoudatos
    • 3
  1. 1.University of Thessaly School of AgricultureNew Ionia MagnisiaGreece
  2. 2.Galaxidi Sea FarmGalaxidiGreece
  3. 3.School of Biological SciencesUniversity of Wales SwanseaWales

Personalised recommendations