Skip to main content
Log in

Formation of Colloidal Silica and Alumina During Experimental Granodiorite Weathering

  • Published:
Aquatic Geochemistry Aims and scope Submit manuscript

Abstract

The role of aluminum and silica in the formation of colloids during granodiorite weathering was studied on the basis of long-term experiments in batch reactors. Rock samples were dissolved in un-buffered solutions of initial pH ∼ 3.2, 5.4, and 9.9 at ambient conditions for 500 days. During weathering, extremely high supersaturation with respect to various secondary solids was attained in the solutions. Consequently, new solids, part of which was conserved in solutions as colloids, condensed. The mean concentrations of colloidal Si reached values of 70, 50, and 48 μmol 1−1 in the alkaline, neutral, and acid solutions, respectively. The mean concentrations of colloidal Al, reached values of 34, 22, and 12 μmol 1−1 in the alkaline, neutral, and acid solutions, respectively. The concentration of colloids gradually decreased after 200-400 days of experiment. This phenomenon was interpreted as being due to the competition between homogeneous nucleation and crystal growth. At the initial stages of the experiments, the colloidal species (predominantly colloidal Al) comprised a large proportion of the total amounts of aqueous species. Their share, however, decreased with time. The molar Al/Si-ratios of colloids were as high as 2–2.5 at the early stages of the experiment. After 250–300 days of experiments, on the other hand, these ratios decreased to values of about 0.5 in both the neutral and alkaline solutions and to a value of 0.15 in the acid solution. The evolution of colloids was consistent with the evolution of secondary solids in the sequence Al-hydroxides – clay minerals (illite, chlorite), in both the neutral and alkaline solutions. In acid solutions, the evolution of Al/Si-colloids was influenced by the presence of sulfate ion and Al-sulfate precipitation. Besides Al and Si, other elements, in particular Ca or Mg as a major component and Na, K, P, S, and Cl as minor components, readily participated in the formation of colloids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adu-Wusu K.and Wilcox W.R.(1991)Kinetics of silicate reaction with gibbsite.J.Coll.Int. Sci.143, 127–138.

    Google Scholar 

  • Bache B.W.and Sharp G.S.(1976)Soluble polymeric hydroxy-aluminium ions in acid soils. J.Soil Sci.27, 167–174.

    Google Scholar 

  • Benedettia M., Ranville J.F., Ponthieua M.and Pinheiroc J.P.(2002)Field-.ow fraction-ation characterization and binding properties of paniculate and colloidal organic matter from the Rio Amazon and Rio Negro.Organic Geochem.33, 269–279.

    Google Scholar 

  • Bottero J.Y., Cases J.M., Flessinger F.and Poirier J.E.(1980)Studies of hydrolyzed aluminum chloride solutions.1.Nature of aluminum species and composition of aqueous solutions.J.Phys.Chem.84, 2933–2939.

    Google Scholar 

  • Bourrie ´ G., Grimaldi C.and Re ´geard A.(1989)Monomeric versus mixed monomeric –polymeric models for aqueous aluminium species:Constraints from low-temperature natural waters in equilibrium with gibbsite under temperate and tropical climate.Chem.Geol.76, 403–417.

    Google Scholar 

  • Brandt F., Bosbach D., Krawczyk-Ba ¨rsch E., Arnold T.and Bernhard G.(2003)Chlorite dissolution in the acid pH-range:A combined microscopic and macroscopic approach. Geochim.Cosmochim.Acta 67, 1451–1461.

    Google Scholar 

  • Brantley S.L., Crane S.R., Crerar D.A., Hellmann R.and Stallard R.(1986)Dissolution of dislocation etch pits in quartz.Geochim.Cosmochim.Acta 50, 2349–2361.

    Google Scholar 

  • Browne B.A.and Driscoll C.T.(1992)Soluble aluminum silicates:Stoichiometry,stability, and implications for environmental geochemistry.Science 256, 1667–1670.

    Google Scholar 

  • Busenberg E.and Clemency C.V.(1976)The dissolution kinetics of feldspars at 25 _ and l atm.CO2 partial pressure.Geochim.Cosmochim.Acta 40, 41–49.

    Google Scholar 

  • Chou L.and Wollast R.(1984)Steady-state kinetics and dissolution mechanisms of albite. Am.J.Sci.285, 963–993.

    Google Scholar 

  • Crerar D.A., Axtmann E.V.and Axtmann R.C.(1981)Growth and ripening of silica polymers in aqueous solutions.Geochim.Cosmochim.Acta 45, 1259–1266.

    Google Scholar 

  • Degueldre C.A.and Wernli B.(1987)Characterization of the natural inorganic colloids from a reference granitic ground water.Anal.Chim.Acta 195, 211–223.

    Google Scholar 

  • Degueldre C., Baeyens B., Goerlich W., Riga J. Verbist J.and Stadelmann P.(1989)Colloids in water from a subsurface fracture in granitic rock,Grimsel Test Site,Switzerland. Geochim Cosmochim.Acta 53, 603–610.

    Google Scholar 

  • Determann H.(1967)Gelchromatographie.Springer Verlag, Berlin-Heidelberg-New York.

    Google Scholar 

  • Dia A., Gruau G., Olivie ´-Lauquet G., Riou C., Mole ´nat J.and Curmi P.(2000)The distri-bution of rare earth elements in ground waters:Assessing the role of source-rock com-position,redox changes and colloidal particles.Geochim.Cosmochim.Acta 64,4131–4151.

    Google Scholar 

  • Dietzel M.(2000)Dissolution of silicates and the stability of polysilicic acid.Geochim.Cos-mochim.Acta 64, 3275–3281.

    Google Scholar 

  • Dupre B., Viers J., Dandurand J.-L., Polve M., Benezeth P., Vervier P.and Braun J.-J.(1999) Major and trace elements associated with colloids in organic-rich river waters:Ultra l-tration of natural and spiked solutions.Chem.Geol.160, 63–80.

    Google Scholar 

  • Eggleston C.M., Hochella Jr. M.F.and Parks G.A (1989)Sample preparation and aging e. ects on the dissolution rate and surface composition of diopside.Geochim.Cosmochim. Acta 53, 797–804.

    Google Scholar 

  • Faimon J.(1995)Natural Al and Si Colloids Formed During Aluminosilicate Weathering.Ph.D. thesis.Masaryk University,Brno, Czech Republic (in Czech).

    Google Scholar 

  • Faimon,J.(1998)Kinetics of the release of silicon and aluminium from aluminosilicates into aqueous mildly acid solutions.Scripta Fac.Sci.Nat.Univ.Masaryk Brun.(Brno,Czech Rep.),25, 59–68.

    Google Scholar 

  • Faimon J.and Ondra ´c ¡ek Z.(1993)Gel ltration chromatography with HF detector –a useful tool for the study of natural colloids.Scripta Fac.Sci.Nat.Univ.Masaryk Brun.(Brno, Czech Rep.),23 (Geology),3–15.

  • Gaboriaud,F., Nonat,A., Chaumont,D.and Craievich,A.(1999)Aggregation and gel formation in basic silico-calco-alkaline solutions studies:A SAKS,SANS and ELS study. J.Phys.Chem.B 103, 5775–5781.

    Google Scholar 

  • Gý ´slason S.R., Heaney P.J., Oelkers E.H.and Schott J.(1997)Kinetic and thermodynamic properties of moganite,a novel silica polymorph.Geochim.Cosmochim.Acta 61, 1193–1204.

    Google Scholar 

  • Grindrod P., Peletier M.and Takase H.(1999)Mechanical interaction between swelling com-pacted clay and fractured rock,and the leaching of clay colloids.Eng.Geol.54, 159–165.

    Google Scholar 

  • Gunnars A., Blomqvist S., Johansson P.and Andersson C.(2002)Formation of Fe(III) oxyhydroxide colloids in freshwater and brackish seawater,with incorporation of phos-phate and calcium.Geochim.Cosmochim.Acta 66, 745–758.

    Google Scholar 

  • Hall S.B., Duffield J.R.and Williams D.R.(1991)A reassessment of the applicability of the DLVO theory as an explanation for the Schulze –Hardy rule for colloid aggregation. J.Coll.Int.Sci.143, 411–415.

    Google Scholar 

  • Hamilton J.P., Pantano C.G.and Brantley S.L.(2000)Dissolution of albite glass and crystal. Geochim.Cosmochim.Acta 64, 2603–2615.

    Google Scholar 

  • Hine P.T.and Bursill D.B.(1984)Gel permeation chromatography of humic acid.Water Res.18, 1461–1465.

    Google Scholar 

  • Holdren Jr., G.R.and Adams J.E.(1982)Parabolic dissolution kinetics of silicate minerals: An artifact of nonequilibrium precipitation processes?Geology 10, 186–190.

    Google Scholar 

  • Holdren Jr., G.R.and Speyer P.M.(1985)pH dependent changes in the rates and stoichi-ometry of dissolution of an alkali feldspar at room temperature.Am.J.Sci.285, 994–1019.

    Google Scholar 

  • Hunter K.A.(1983)On the estuarine mixing of dissolved substances in relation to colloid stability and surface properties.Geochim.Cosmochim.Acta 47, 467–473.

    Google Scholar 

  • Kalinowski B.E., Faith-Ell C.and Schweda P.(1998)Dissolution kinetics and alteration of epidote in acidic solutions at 25 _ Chem.Geol.151, 181–197.

    Google Scholar 

  • Kalinowski B.E., Liermann L.J., Brantley S.L., Barnes A.and Pantano C.G (2000)X-ray photoelectron evidence for bacteria-enhanced dissolution of hornblende.Geochim. Cosmochim.Acta 64, 1331–1343.

    Google Scholar 

  • Klepetsanis P.G.and Koutsoukos P.G.(1991)Spontaneous precipitation of calcium sulfate at conditions of sustained supersaturation.J.Coll.Int.Sci.143, 299–308.

    Google Scholar 

  • Knauss K.G.and Wolery T.J.(1986)Dependence of albite dissolution kinetics on pH and time at 25 and 70 _ Geochim.Cosmochim.Acta 50, 2481–2497.

    Google Scholar 

  • Ku ¨hnel R.A.(1987)The role of cationic and anionic scavengers in laterites.Chem.Geol.60, 31–40.

    Google Scholar 

  • Lasaga A.C.(1981)Rate laws of chemical reactions.In Kinetics of Geochemical Processes (eds.A.C. Lasaga and R.J. Kirkpatrick),Review in Mineralogy,Vol.8,Chap.1, pp.1–68.Min.Soc.Am., Chelsea,Michigan.

    Google Scholar 

  • Lasaga A.C.and Blum A.E.(1986)Surface chemistry,etch pits and mineral/water reactions. Geochim.Cosmochim.Acta 50, 2363–2379.

    Google Scholar 

  • Lægdsmand M., Villholth K.G., Ullum M.and Jensen K.H.(1999)Processes of colloid mobilization and transport in macroporous soil monoliths.Geoderma 93, 33–59.

    Google Scholar 

  • Liermann L.J., Kalinowski B.E.Brantley S.L.and Ferry J.G.(2000)Role of bacterial siderophores in dissolution of hornblende.Geochim.Cosmochim.Acta 64, 587–602.

    Google Scholar 

  • Mackin J.E.and Aller R.C.(1984)Diagenesis of dissolved aluminium in organic rich estuarine sediments.Geochim.Cosmochim.Acta 48, 299–313.

    Google Scholar 

  • Malmstro ¨m M.and Banwart S.(1997)Biotite dissolution at 25 _ The pH dependence of dissolution rate and stoichiometry.Geochim.Cosmochim.Acta 61, 2779–2799.

    Google Scholar 

  • Mast M.A.and Drever J.I.(1987)The e. ect of oxalate on the dissolution rates of oligoclase and tremolite.Geochim.Cosmochim.Acta 51, 2559–2568.

    Google Scholar 

  • May H.M., Acker J.G., Smyth J.R., Bricker O.P.and Dyar M.D.(1995)Aqueous dissolution of low-iron chlorite in dilute acid solutions at 25 _ 32nd Annual Meeting Clay Minerals Society.

  • McCarthy J.F.and Shevenell L.(1998)Processes controlling colloid composition in a frac-tured and karstic aquifer in eastern Tennessee,USA.J.Hydrol.206, 191–218.

    Google Scholar 

  • Means J.C.and Wijayaratne R.(1982)Role of natural colloids in the transport of hydro-phobic pollutants.Science 215, 968–970.

    Google Scholar 

  • Mills W.B., Liu S.and Fong F.K.(1991)Literature review and model (COMET)for colloid/ metals transport in porous media.Ground Wat.29, 199–208.

    Google Scholar 

  • Missana T., Alonso U ´.and Turrero M.J.(2003)Generation and stability of bentonite colloids at the bentonite/granite interface of a deep geological radioactive waste repository.J.Cont. Hydrol.61, 17–31.

    Google Scholar 

  • Moran S.B.and Moore R.M.(1989)The distribution of colloidal aluminium and organic carbon in coastal and open ocean waters o. Nova Scotia.Geochim.Cosmochim.Acta 53, 2519–2527.

    Google Scholar 

  • Overbeek J.Th.G.(1977)Recent developments in the understanding of colloid stability. J.Coll.Int.Sci.58, 408–422.

    Google Scholar 

  • Oxburgh R., Drever J.I.and Sun Y.T.(1994)Mechanism of plagioclase dissolution in acid solutions at 25 _ Geochim.Cosmochim.Acta 58, 661–669.

    Google Scholar 

  • Parkhurst D.L.and Appelo C.A.J.(1999)User 's guide to PHREEQC (Version 2)a com-puter program for speciation,batch-reaction,one-dimensional transport,and inverse geochemical calculations:U.S.Geol.Surv.Water-Res.Investig.Report 99-4259,312 p.

  • Phair J.W.and VanDeventer J.S.J.(2001)E. ect of silicate activator pH on the leaching and material characteristics of waste-based inorganic polymers.Min.Engin.14, 289–304.

    Google Scholar 

  • Plummer L.N., Wigley T.M.L.and Parkhurst D.L.(1978)The kinetics of calcite dissolution in CO2-water systems at 5 –60 _ and 0.0 –1.0 atm CO2.Am.J.Sci.278, 179–216.

    Google Scholar 

  • Pokrovsky O.S.and Schott J.(2002)Iron colloids/organic matter associated transport of major and trace elements in small boreal rivers and their estuaries (NW Russia).Chem. Geol.190, 141–179.

    Google Scholar 

  • Pokrovski G.S., Schott J., Hazemann J.-L., Farges, F.O.and Pokrovsky O.S.(2002)An X-ray absorption ne structure and nuclear magnetic resonance spectroscopy study of gal-lium –silica complexes in aqueous solution.Geochim.Cosmochim.Acta 66, 4203–4322.

    Google Scholar 

  • Pokrovski G.S., Schott J., Farges F.O.and Hazemann J.-L.(2003)Iron (III)–silica inter-actions in aqueous solution:Insights from X-ray absorption ne structure spectroscopy. Geochim.Cosmochim.Acta 67, 3559–3573.

    Google Scholar 

  • Porcelli D., Andersson P.S., Wasserburg G.J., Ingri J.and Baskaran M.(1997)The importance of colloids and mires for the transport of uranium isotopes through the Kalix River watershed and Baltic Sea.Geochim.Cosmochim.Acta 61, 4095–4113.

    Google Scholar 

  • Puls R.W.and Powell R.M.(1992)Transport of inorganic colloids through natural aquifer material:Implications for contaminant transport.Env.Sci.Technol.26, 614–621.

    Google Scholar 

  • Puls R.W., Eychaner J.H.and Powell R.M.(1990)Colloidal-facilitated transport of inor-ganic contaminants in ground water:Part I.Sampling considerations.US Env.Prot. Agency,EPA/600/M-90/023, 1–12.

  • Puls R.W., Powell R.M., Clark D.A.and Paul C.J.(1991)Facilitated transport of inorganic contaminants in ground water:Part II.Colloidal transport.US Env.Prot.Agency,EPA/ 600/M-91/040,1–12.

  • Rimstidt J.D.and Barnes H.L.(1980)The kinetics of silica –water reactions.Geochim. Cosmochim.Acta 44, 1683–4699.

    Google Scholar 

  • Rochelle C.A., Bateman K., MacGregor R., Pearce J.M., Savage D.and Wetton P.D.(1996) Experimental determination of chlorite dissolution rates.Materials Research Society Symposium.

  • Rothbaum H.P.and Rohde A.G.(1979)Kinetics of silica polymerization and deposition from dilute solutions between 5 and 180 _ J.Coll.Int.Sci.71, 533–559.

    Google Scholar 

  • Schweda P.(1989)Kinetics of alkali feldspar dissolution at low temperature.In Proc.6th Int. Symp.Water/Rock Interaction (ed.D.L. Miles),pp.609–612.A.A.Balkema.

  • Shimada K.and Tarutani T.(1979)Gel chromatographic study of the polymerization of silicic acid.J.Chrom.168, 401–406.

    Google Scholar 

  • Steefel C.I.and Van Cappellen P.(1990)A new kinetic approach to modeling water –rock interaction:The role of nucleation,precursors,and Ostwald ripening.Geochim.Cosmo-chim.Acta 54, 2657–2677.

    Google Scholar 

  • Steinmann P., Billen T., Loizeau J.-L.and Dominik J.(1999)Beryllium-7 as a tracer to study mechanisms and rates of metal scavenging from lake surface waters.Geochim.Cosmochim. Acta 63, 1621–1633.

    Google Scholar 

  • Stillings L.L., Drever J.I., Brantley S.L., Sun Y.T.and Oxburgh,R.(1996)Rates of feldspar dissolution at pH 3 –7 with 0 –8 M oxalic acid.Chem.Geol.132, 79–89.

    Google Scholar 

  • Stumm W.and Morgan J.J.(1981)Aquatic Chemistry.Wiley and Sons.

  • Sverdrup H.U.and Warfvinge P.(1988)Weathering of primary silicate mineral in the natural soil environment in relation to a chemical weathering model.Water Air Soil Poll.38, 387 – 408.

  • Sverdrup,H.and Warfvinge,P.(1995)Estimating eld weathering rates using laboratory kinetics.In Chemical Weathering Rates of Silicate Minerals (eds.White, A.F.and Brantley, S.L.),pp.485–541.

  • Swartz C.H., Ulery A.L.and Gschwend P.M.(1997)An AEM-TEM study of nanometer-scale mineral associations in an aquifer sand:Implication for colloid mobilization.Geo-chim.Cosmochim.Acta 61, 707–718.

    Google Scholar 

  • Tarutani T.(1970)Chromatographic behavior of silicic acid on Sephadex columns.J.Chrom. 50, 523–526.

    Google Scholar 

  • Taylor S.T., Blum J.D., Lasaga A.C.and MacInnis I.N.(2000)Kinetics of dissolution and Sr release during biotite and phlogopite weathering.Geoch.Cosmochim.Acta 7, 1191–1208.

    Google Scholar 

  • Thornber M.R., Bettenay E.and Russell W.G.R.(1987)A mechanism of aluminosilicate cementation to form a hardpan.Geochim.Cosmochim.Acta 51, 2303–2310.

    Google Scholar 

  • Viers J., Dupre ´B., Polve ´M., Schott J., Dandurand J.-L.,and Braun J.J.(1997)Chemical weathering in the drainage basin of a tropical watershed (Nsimi-Zoetele site,Cameroon): Comparison between organic-poor and organic-rich waters.Chem.Geol 140, 181–206.

    Google Scholar 

  • Vilks P., Miller H.G.and Doern D.C.(1991)Natural colloids and suspended particles in the Whiteshell research area,Manitoba Canada,and their potential e. ect on radiocolloid formation.Appl.Geoch.6, 565–574.

    Google Scholar 

  • Von Gunten H.R., Waber U.E.and Krahenbuhl U.(1988)The reactor accident at Cher-nobyl:A possibility to test colloid-controlled transport of radionuclides in a shallow aquifer.J.Cont.Hydrol.2, 237–247.

    Google Scholar 

  • Waber U.E., Lienert C.and Von Gunten H.R.(1990)Colloid-related in ltration of trace metals from a river to shallow groundwater.J.Cont.Hydrol.6, 251–265.

    Google Scholar 

  • Wada S.I.and Wada K.(1981)Reactions between aluminate ions and orthosilicic acid in dilute alkaline to neutral solutions.Soil Sci.132, 267–273.

    Google Scholar 

  • Wegner M.W.and Christie J.M.(1983)Chemical etching of deformation substructures in quartz.Phys.Chem.Minerals.9, 67–79.

    Google Scholar 

  • Welch S.A.and Ullman W.J.(1996)Feldspar dissolution in acidic and organic solutions: Compositional and pH dependence of dissolution rate.Geochim.Cosmochim.Acta 60, 2939–2948.

    Google Scholar 

  • Wilkinson K.J., Ne'gre J.-C.and Buffle J.(1997)Coagulation of colloidal material in surface waters:The role of natural organic matter.J.Cont.Hydrol.26, 229–243.

    Google Scholar 

  • White A.F., Bullen T.D., Vivit D.V., Schulz M.S.and Clow D.W.(1999)The role of disseminated calcite in the chemical weathering of granitoid rocks.Geochim.Cosmochim. Acta 63, 1939–1953.

    Google Scholar 

  • Yamanaka C., Yokoyama T.and Tarutani T.(1986)Retarding e. ect of aluminium on polymerization of silicic acid particles.J Chrom.367, 419–422.

    Google Scholar 

  • Yariv S.and Cross H.(1979)Geochemistry of Colloid Systems.Springer-Verlag.

  • Yates D.M., Joyce K.J.and Heaney P.J.(1998)Complexation of copper with polymeric silica in aqueous solution.Appl.Geochem.13, 235–241.

    Google Scholar 

  • Yau W.W., Kirkland J.J.and Bly D.D.(1979)Modern Size-exclusion Liquid Chromatog-raphy.A Wiley-Interscience Publication, New York.

    Google Scholar 

  • Yokoyama T., Yamanaka C.and Tarutani T.(1987)Formation of silicato complexes of aluminium in aqueous solution.J.Chrom.403, 151–157.

    Google Scholar 

  • Yokoyama T., Takahashi Y.and Tarutani T.(1991)Retarding and accelerating e. ects of aluminum on the growth of polysilicic acid particles.J.Coll.Int.Sci.141, 559–563.

    Google Scholar 

  • Za ¨nker H., Moll H., Richter W., Brendler V., Hennig C., Reich T., Kluge A.and Hu ¨ttig G. (2002)The colloid chemistry of acid rock drainage solution from an abandoned Zn –Pb –Ag mine.Appl Geochem.17, 633–648.

    Google Scholar 

  • Zhang H.and Bloom P.R.(1999)Dissolution kinetics of Hornblende in organic acid solu-tions.Soil Sci.Soc.Am.J.63, 815–822.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Faimon, J. Formation of Colloidal Silica and Alumina During Experimental Granodiorite Weathering. Aquatic Geochemistry 9, 305–341 (2003). https://doi.org/10.1023/B:AQUA.0000029026.75109.75

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:AQUA.0000029026.75109.75

Navigation