Skip to main content

Advertisement

Log in

Adsorption of Copper, Nickel, and Cadmium on Goethite in the Presence of Organic Ligands

  • Published:
Aquatic Geochemistry Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Adsorption of copper, cadmium and nickel at low concentrations on goethite was studied in the presence of the simple organic ligands oxalate, salicylate, and pyromellitate. The experimental metal adsorption behavior was compared to calculations with a surface complexation model to evaluate the most important interactions. Oxalate mostly decreased Cu and Ni adsorption at high pH-values by competition between solution and surface complexation but had no effect on Cd adsorption. Cu adsorption in the presence of oxalate below pH 6 could best be described by defining a ternary complex of type A (surface-metal-ligand). Salicylate had only minor effects on metal adsorption. The adsorption of Cu in the presence of salicylate above pH 5 could be explained by a ternary complex of type A. Pyromellitate increased the adsorption of Cu and Cd in the acidic pH-range, likely by formation of ternary surface complexes of type B (surface-ligand-metal).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aiken G. R., McKnight D. M., Wershaw R. L. and Mac Carthy P. (1985) Humic Substances in Soil, Sediment, and Water. Geochemistry, Isolation, and Characterization. John Wiley & Sons, New York.

    Google Scholar 

  • Ali M. and Dzombak D. A., (1996a) Competitive sorption of simple organic acids and sulfate on goethite. Environ. Sci. Technol. 30(4), 1061–1071.

    Article  Google Scholar 

  • Ali M. and Dzombak D. A. (1996b) Interaction of copper, organic acid, and sulfate in goethite suspensions. Geochim. Cosmochim. Acta 60, 5045–5053.

    Google Scholar 

  • Ali M. and Dzombak D. A. (1996c) Effects of simple organic acids on sorption of Cu2+ and Ca2+ on goethite. Geochim. Cosmochim. Acta 60, 291–304.

    Google Scholar 

  • Angove M. J., Wells J. D. and Johnson B. B. (1999) Adsorption of cadmium(II) onto goethite and kaolinite in the presence of benzene carboxylic acids. Colloid Surface A 146, 243–251.

    Article  Google Scholar 

  • Bartschat B.M., Cabaniss S. E. and Morel F. M. M. (1992) Oligoelectrolyte model for cation binding by humic substances. Environ. Sci. Technol. 26(2), 284–294.

    Article  Google Scholar 

  • Benedetti M. F., Milne C. J., Kinniburgh D. G., van Riemsdijk W. H. and Koopal L. K. (1995) Metal ion binding to humic substances: Application of the non-ideal competitive adsorption model. Environ. Sci. Technol. 29(2), 446–457.

    Google Scholar 

  • Benyahya L. and Garnier J.-M. (1999) Effect of salicylic acid upon trace-metal sorption (Cd(II), Zn(II), Co(II), and Mn(II)) onto alumina, silica, and kaolinite as a function of pH. Environ. Sci. Technol. 33(9), 1398–1407.

    Article  Google Scholar 

  • Biber M. and Stumm W. (1994) An in-situ ATR-FTIR study: The surface coordination of salicylic acid on aluminium and iron(III) oxides. Environ. Sci. Technol. 28(5), 763–768.

    Article  Google Scholar 

  • Boily J.-F. (1999) A Refined Multisite Complexation Model for Cd(II) Surface Complexes on Goethite Particles of different Surface Areas. Ph.D. thesis, Umeå University, Sweden.

    Google Scholar 

  • Boily J.-F., Nilsson N., Persson P. and Sjöberg S. (2000) Benzenecarboxylate surface complexation at the goethite/water interface: I. A mechanistic description of pyromellitate surface complexes from the combined evidence of infrared spectroscopy, potentiometry, adsorption data, and surface complexation modeling. Langmuir 16, 5719–5729.

    Article  Google Scholar 

  • Davis J.A. and Leckie J.O. (1978) Effect of adsorbed complexing ligands on trace metal uptake by hydrous oxides. Environ. Sci. Technol. 12, 1309–1315.

    Article  Google Scholar 

  • Dzombak D. A., Fish W. and Morel F. M. M. (1986) Metal-humate interactions. 1. Discrete ligand and continuous distribution models. Environ. Sci. Technol. 20(7), 669–675.

    Article  Google Scholar 

  • Dzombak D. A. and Morel F. M. M. (1990) Surface Complexation Modeling. Hydrous Ferric Oxide. John Wiley & Sons, New York.

    Google Scholar 

  • Ehrhardt J. J. (ed.), (1999) Proceedings of the Meeting on ‘Réactivité de surface de goethites’. Organisation GDR CNRS PRACTIS. Laboratoire de Chimie Physique pour l'Environnement, Nancy.

    Google Scholar 

  • Elliott H. A. and Denneny C. M. (1982) Soil adsorption of cadmium from solutions containing organic ligands. J. Environ. Qual. 11(4), 658–662.

    Google Scholar 

  • Evanko C. R. and Dzombak D. A. (1998) Influence of structural features on sorption of NOM-analogue organic acids to goethite. Environ. Sci. Technol. 32(19), 2846–2855.

    Article  Google Scholar 

  • Evanko C. R. and Dzombak D. A. (1999) Surface complexation modeling of organic acid sorption to goethite. J. Colloid Interface Sci. 214, 189–206.

    Article  Google Scholar 

  • Filius J. D., Hiemstra T. and Van Riemsdijk W. H., (1997) Adsorption of Small Weak Organic Acids on Goethite: Modeling of Mechanisms. J. Colloid Interface Sci. 195, 368–380.

    Article  Google Scholar 

  • Giammar D. E. and Dzombak D. A., (1998) Copper complexation with the mellitic acid series. Journal of Solution Chemistry 27(1), 89–105.

    Article  Google Scholar 

  • Gu B., Schmitt J., Chen Z., Liang L. and McCarthy H. F. (1994) Adsorption and desorption of natural organic matter on iron oxide: Mechanisms and models. Environ. Sci. Technol. 28, 38–46.

    Article  Google Scholar 

  • Herbelin, A. and Westall, J. (1994) FitEQL. A computer program for determination of chemical equilibrium constants from experimental data. Version 3.1. Department of Chemistry, Oregon State University. Corvallis, Oregon 97331.

    Google Scholar 

  • Huang C. P., Elliott H. A., Ashmead R. M. (1977) Interfacial reactions and the fate of heavy metals in soil-water systems. Water Pollution Control Federation 745–756.

  • Hug S. and Sulzberger B. (1994) In Situ Fourier transform infrared spectroscopic evidence for the formation of several different surface complexes of oxalate on TiO2 in the aqueous phase. Langmuir 10, 3587–3597.

    Article  Google Scholar 

  • Kumar A. and Fish W. (1996) Ligands, metals, and metal-ligand complexes as differential probes of soil adsorptive heterogeneity. Colloid Surface A 107, 111–122.

    Article  Google Scholar 

  • Lamy I., Djafer M. and Terce M. (1991) Influence of oxalic acid on the adsorption of cadmium at the goethite surface. Water, Air, Soil Poll. 57–58, 457–465.

    Article  Google Scholar 

  • Leenheer J. A., Wershaw R. L. and Reddy M. M. (1995) Strong-acid, carboxylic-group structures in fulvic acid from the Suwannee River, Georgia. 1. Minor structures. Environ. Sci. Technol. 29(2), 393–398.

    Google Scholar 

  • Martell A. E., Smith R. M. (2001) NIST Critically Selected Stability Constants of Metal Complexes. NIST Standard Reference Database 46 Version 6.0.

  • Mash H. E., Chin Y., Sigg L., Hari R. and Xue H., (2003) Complexation of copper by zwitterionic aminosulfonic (good) buffers. Anal. Chem. 75, 671–677.

    Article  Google Scholar 

  • Mesuere K. and Fish W. (1992) Chromate and Oxalate Adsorption on Goethite: 1. Calibration of Surface Complexation Models. Environ. Sci. Technol. 26(12), 2357–2370.

    Google Scholar 

  • Morsad H., (1999) Caractérisation physico-chimique d'un sable de quartz et d'un oxyhydroxyde de fer. Report-DEA “Chimie et Microbiologie de l'eau (Université Poitiers, Pau, Nancy)-Institut de Mécanique des Fluides, Université Louis Pasteur, Strasbourg.

    Google Scholar 

  • Müller B., (1996) ChemEQL A Program to Calculate Chemical Speciation, Equilibrium, Titrations, Dissolution, Precipitation, Adsorption, Simple Kinetics, pX-pY Diagrams. Version 2.0. EAWAG Kastanienbaum (Switzerland).

  • Naidu R. and Harter R. D. (1998) Effect of different organic ligands on cadmium sorption by and extractability from soils. Soil. Sci. Soc. Am. J. 62, 644–650.

    Google Scholar 

  • Öhman L.-O. and Sjöberg S. (1996) The experimental determination of thermodynamic properties for aqueous aluminium complexes. Coordin. Chem. Rev. 149, 33–57.

    Google Scholar 

  • Parfitt R. L., Fraser A. R., Russell J. and Farmer V. C. (1977) Adsorption on hydrous oxides II. Oxalate, benzoate and phosphate on gibbsite. J. Soil Sci. 28, 40–47.

    Google Scholar 

  • Robertson A. P. (1998) Acid/Base, Copper Binding, and CU++/H+ Exchange Properties of Goethite, an Experimental and Modelin Study. Environ. Sci. Technol. 32(17), 2519–2530.

    Article  Google Scholar 

  • Siffert C. and Sulzberger B. (1991) Light-induced dissolution of hematite in the presence of oxalate: A case study. Langmuir 7(8), 1627–1634.

    Article  Google Scholar 

  • Smith R. M. and Martell A. E. (1976) Critical Stability Constants. Vol. 4: Inorganic Complexes. Plenum Press, New York.

    Google Scholar 

  • Smith R. M. and Martell A. E. (1977) Critical Stability Constants. Vol. 3: Other Organic Ligands. Plenum Press, New York.

    Google Scholar 

  • Smith R. M. and Martell A. E., (1982) Critical Stability Constants. Vol. 5: First Supplement. Plenum Press, New York.

    Google Scholar 

  • Stevenson F. J. (1982) Humus Chemistry: Genesis, Composition, Reactions. John Wiley and Sons, Inc., New York.

    Google Scholar 

  • Stumm W. (1996) Chemistry of the Solid-Water Interface. John Wiley and Sons, New York.

    Google Scholar 

  • Stumm W. and Morgan J. J. (1996) Aquatic Chemistry. John Wiley and Sons, New York.

    Google Scholar 

  • Sulzberger B., Suter D., Siffert C., Banwart S. and Stumm W. (1989) Dissolution of Fe(III) (hydr)oxides in natural waters; laboratory assessment on the kinetics controlled by surface coordination. Mar. Chem. 28, 127–144.

    Article  Google Scholar 

  • Tipping E. (1986) Some aspects of the interactions between particulate oxides and aquatic humic substances. Mar. Chem. 18, 161–169.

    Article  Google Scholar 

  • Tipping E. (1993) Modelling ion binding by humic acids. Colloid Surface A 73, 117–131.

    Article  Google Scholar 

  • Tipping E. (1994) WHAM-A chemical equilibrium model and computer code for waters, sediments, and soils incorporating a discrete site/electrostatic model of ion-binding by humic substances. Comput. Geosci. 20(6), 973–1023.

    Google Scholar 

  • Tipping E. and Hurley M. A. (1992) A unifying model of cation binding by humic substances. Geochim. Cosmochim. Acta 56, 3627–3641.

    Article  Google Scholar 

  • Tipping E. and Woof C. (1990) Humic substances in acid organic soils: Modelling their release to the soil solution in terms of humic charge. J. Soil Sci. 41, 573–586.

    Google Scholar 

  • Venema P., Hiemstra T. and van Riemsdijk W. H. (1996) Multisite adsorption of cadmium on goethite. J. Colloid Interface Sci. 183, 515–527.

    Article  Google Scholar 

  • Violante A., Rao M. A., De Chiara A. and Gianfreda L. (1996) Sorption of phosphate and oxalate by a synthetic aluminium hydroxylsulphate complex. Europ. J. Soil Sci. 47, 241–247.

    Google Scholar 

  • von Gunten H. R., Karametaxas G., Kraehenbuehl U., Kuslys M., Giovanoli R., Hoehn E. and Keil R. (1991) Seasonal biogeochemical cycles in riverborne groundwater. Geochim. Cosmochim. Acta 55, 3597–3609.

    Article  Google Scholar 

  • von Gunten H. R. and Kull T. P. (1986) Infiltration of inorganic compounds from the Glatt River, Switzerland, into a groundwater aquifer. Water Air Soil Poll. 29, 333–346.

    Google Scholar 

  • von Gunten H. R. and Lienert C. (1993) Decreased metal concentrations in ground water caused by controls of phophate emissions. Nature 364, 220–222.

    Article  Google Scholar 

  • Weirich D., (2000) Influence of Organic Ligands on the Adsorption of Copper, Cadmium, and Nickel on Goethite. Diss. ETH No. 13917. Ph.D. thesis., Zürich.

  • Yost E. C., Tejedor-Tejedor M. I. and Anderson M. A. (1990) In situ CIR-FTIR characterization of salicylate complexes at the goethite/aqueous solution interface. Environ. Sci. Technol. 24(6), 822–828.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Sigg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buerge-Weirich, D., Behra, P. & Sigg, L. Adsorption of Copper, Nickel, and Cadmium on Goethite in the Presence of Organic Ligands. Aquatic Geochemistry 9, 65–85 (2003). https://doi.org/10.1023/B:AQUA.0000019455.82756.ac

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:AQUA.0000019455.82756.ac

Navigation