, Volume 9, Issue 6, pp 785–796 | Cite as

Peloruside A enhances apoptosis in H-ras-transformed cells and is cytotoxic to proliferating T cells

  • J. H. Miller
  • B. Rouwé
  • T. N. Gaitanos
  • K. A. Hood
  • K. P. Crume
  • B. T. Bäckström
  • A. C. La Flamme
  • M. V. Berridge
  • P. T. Northcote


Peloruside A (peloruside), a compound isolated from the marine sponge Mycale hentscheli, inhibits growth of human (HL-60) and mouse (32D-ras) myeloid leukemic cells, as well as non-transformed 32D cells. Using the MTT cell proliferation assay and trypan blue dye exclusion tests, little difference was seen in growth inhibition between 32D and 32D-ras cells; however, peloruside was more cytotoxic to the oncogene-transformed cells. Peloruside also blocked 32D-ras cells more readily in G2/M of the cell cycle, leading to apoptosis. Annexin-V/propidium iodide staining of 32D and 32D-ras cells showed that 1.6 μM peloruside induced significant cell death by 36 hours in 32D cells (16% survival), but to comparable levels as early as 14 hours in 32D-ras cells (11% survival). There was no evidence for activation of either of the initiator caspases-8 or -9 by 0.1 μM peloruside following 12 hours of exposure. Peloruside inhibited T cell proliferation and IL-2 and IFN γ production in both the mixed lymphocyte reaction and following CD3 cross-linking, and this effect was shown to be a non-specific cytotoxic effect. It is concluded that peloruside preferentially targets oncogene-transformed cells over non-transformed cells by inducing transformed cells to undergo apoptosis.

caspase immunosuppression mycalamide pateamine peloruside Ras 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    West LM, Northcote PT, Battershill CH. Peloruside A: A potent cytotoxic macrolide isolated from the New Zealand marine sponge Mycale sp. J Org Chem 2000; 65: 445–449.Google Scholar
  2. 2.
    Hood KA, Bäckström BT, West LM, Northcote PT, Berridge MV, Miller JH. The novel cytotoxic sponge metabolite peloruside A, structurally similar to bryostatin-1, has unique bioactivity independent of protein kinase C. Anti-Cancer Drug Design 2001; 16: 155–166.Google Scholar
  3. 3.
    Hood KA, West LM, Rouwé B, et al. Peloruside A, a novel antimitotic agent with paclitaxel-like microtubule-stabilizing activity. Canc Res 2002; 62: 3356–3360.Google Scholar
  4. 4.
    Perry NB, Blunt JW, Munro MH. Mycalamide A, an antiviral compound from a New Zealand sponge of the genus Mycale. J AmChem Soc 1988; 110: 4850–4851.Google Scholar
  5. 5.
    Northcote P, Blunt J, Munro M. Pateamine: Apotent cytotoxin from the New Zealand marine sponge, Mycale sp. Tetrahedron Lett 1991; 32: 6411–6414.Google Scholar
  6. 6.
    West LM, Northcote PT, Hood KA, Miller JH, Page MJ. Mycalamide D, a new cytotoxic amide from the New Zealand marine sponge Mycale species. J Nat Prod 2000; 63: 707–709.Google Scholar
  7. 7.
    Burres NS, Clement JJ. Antitumor activity and mechanism of action of the novel marine natural products Mycalamide-A and-B and Onnamide. Canc Res 1989; 49: 2935–2940.Google Scholar
  8. 8.
    Hood KA, West LM, Northcote PT, Berridge MV, Miller JH. Induction of apoptosis by the marine sponge (Mycale) metabolites, mycalamide A and pateamine. Apoptosis 2001; 6: 207–219.Google Scholar
  9. 9.
    Ogawara H, Higashi K, Uchino K, Perry NB. Change of ras-transformed NRK-cells back to normal morphology by mycalamides A and B, anti-tumor agents from a marine sponge. Chem Pharmacol Bull 1991; 39: 2152–2154.Google Scholar
  10. 10.
    Galvin F, Freeman GJ, Razi-Wolf, Benacerraf B, Nadler L, Reiser H. Effects of cyclosporin A, FK506, and mycalamide A on the activation of murine CD4+ T Cells by the murine B7 antigen. Eur J Immunol 1993; 23: 283–286.Google Scholar
  11. 11.
    Romo D, Rzasa RM, Shea HA, et al. Total synthesis and immunosuppressive activity of (-)-pateamine A and related com-pounds: Implementation of a β-lactam-based macrocyclization. J AmChem Soc 1998; 120: 12237–12254.Google Scholar
  12. 12.
    Strasser A, O'Conner L, Dixit VM. Apoptosis signalling. Ann Rev Biochem 2000; 69: 217–245.Google Scholar
  13. 13.
    Buolamwini JK. Novel anticancer drug discovery. Curr Opin Chem Biol 1999; 3: 500–509.Google Scholar
  14. 14.
    Workman P, Kaye SB. Translating basic cancer research into new cancer therapeutics. Trends Molec Med 2002; 8 (No. 4 Suppl): S1–S9.Google Scholar
  15. 15.
    Shields JM, Pruitt K, McFall A, Shaub A, Der CJ. Understanding Ras: ‘It ain't over 'til it's over’. Cell Biol 2000; 10: 147–154.Google Scholar
  16. 16.
    Malumbres M, Pellicer A. Ras pathways to cell cycle control and cell transformation. Frontiers Biosci 1998; 3: 887–912.Google Scholar
  17. 17.
    Ahmed N, Anderson SM, Berridge MV. IL-3 induces apoptosis in a ras-transformed myeloid cell line. Apoptosis 1999; 4: 1–10.Google Scholar
  18. 18.
    Bradford, MM. Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analy Biochem 1976; 72: 248–254.Google Scholar
  19. 19.
    Kruisbeek AM, Shevach EM. Proliferative assays for Tcell function. In: Coligan J, Kruisbeek AM, Margulies D, Shevach EM, Strober W, eds. Current Protocols in Immunology. New York: John Wiley and Sons, 1991: 3.12.1–3.12.14.Google Scholar
  20. 20.
    Yang X, Hayglass KT. A simple, sensitive, dual mAb based ELISA for murine gamma interferon determination: Comparison with two common bioassays. J Immunoassay 1993; 14: 129–148.Google Scholar
  21. 21.
    Berridge MV, Tan AS, McCoy KD, Wang R. The biochemical and cellular basis of cell proliferation assays that use tetrazolium salts. Biochemica 1996; 4: 14–19.Google Scholar
  22. 22.
    Seddon B, Kelland LR, Workman P. Bioreductive prodrugs for cancer therapy. Methods Mol Med 2004; 90: 515–542.Google Scholar
  23. 23.
    Berridge MV, Tan AS. High-capacity redox control at the plasma membrane of mammalian cells: Trans-membrane, cell surface, and serum NADH-oxidases. Antioxid Redox Signal 2000; 2: 231–242.Google Scholar
  24. 24.
    Irani K, Xia Y, Zweier JL, et al. Mitogenic signalling mediated by oxidants in ras-transformed fibroblasts. Science 1997; 275: 1649–1652.Google Scholar
  25. 25.
    Davis W Jr, Ronai Z, Tew KD. Cellular thiols and reactive oxygen species in drug-induced apoptosis. Persp Pharmacol 2001; 296: 1–6.Google Scholar
  26. 26.
    Liou JS, Chen C-Y, Chen JS, Faller DV. Oncogenic Ras mediates apoptosis in response to protein kinase C inhibition through the generation of reactive oxygen species. J Biol Chem 2000; 275: 39001–39011.Google Scholar
  27. 27.
    Scaffidi C, Fulda S, Srinvivasan A, et al. Two CD95 (apo-1/fas) signalling pathways. EMBO 1998; 17: 1675–1687.Google Scholar
  28. 28.
    Zhuang S, Simon G. Peroxynitrite-induced apoptosis involves activation of multiple caspases in HL-60 cells. Am J Physiol 2000; 279: C341–C351.Google Scholar
  29. 29.
    Wahl AF, Donaldson KL, Fairchild C, et al. Loss of normal p53 function confers sensitization to Taxol by increasing G2/M arrest and apoptosis. Nature Med 1996; 2: 72–79.Google Scholar
  30. 30.
    Wang T-H, Wang H-S, Ichijo H, et al. Microtubule-interfering agents activate c-Jun N-terminal kinase/stress-activated protein kinase through both Ras and apoptosis signal-regulating kinase pathways. J Biol Chem 1998; 273: 4928–4936.Google Scholar
  31. 31.
    Rakovitch E, Mellado W, Hall EJ, Pandita TK, Sawant S, Geard CR. Paclitaxel sensitivity correlates with p53 status and DNA fragmentation, but not G2/M accumulation. Int J Rad Oncol Biol Phys 1999; 44: 1119–1124.Google Scholar
  32. 32.
    Reuter CWM, Morgan MA, Bergmann L. Targetting the Ras signaling pathway: A rational, mechanism-based treatment for hematologic malignancies? Blood 1996: 96: 1655–1669.Google Scholar
  33. 33.
    Gallangher AP, Burnett AK, Bowen DT, Darley RL. Mutant RAS selectively promotes sensitivity of myeloid leukemia cells to apoptosis by a protein kinase C-dependent process. Canc Res 1998; 58: 2029–2035.Google Scholar
  34. 34.
    Ewen ME. Relationship between Ras pathways and cell cycle control. Prog Cell Cycle Res 2000; 4: 1–17.Google Scholar
  35. 35.
    Bergamaschi D, Ronzoni S, Taverna S, et al. Cell cycle per-turbations and apoptosis induced by isohomohalichondrin B (IHB), a natural marine compound. Br J Cancer 1999; 79: 267–277.Google Scholar
  36. 36.
    Zhang X, Minale L, Zampella A, Smith CD. Microfilament depletion and circumvention of multiple drug resistance by sphinxolides. Cancer Res 1997; 57: 3751–3758.Google Scholar
  37. 37.
    Shapiro GI, Harper JW. Anticancer drug targets: Cell cycle and checkpoint control. JClin Invest 1999; 104: 1645–1653.Google Scholar
  38. 38.
    Sharma VK, Li B, Khanna A, Sehajpal PK, Suthanthiran M. Which way for drug-mediated immunosuppression? Curr Opin Immunol 1994; 6: 784–790.Google Scholar
  39. 39.
    Fruman DA, Klee CB, Bierer BE, Burakoff SJ. Calcineurin phosphatase activity in T lymphocytes is inhibited by FK506 and cyclosporin A. Proc Natl Acad Sci USA 1992; 89: 3686–3690.Google Scholar
  40. 40.
    Emmel EA, Verweij CL, Durand DB, Higgins KM, Lacy E, Crabtree GR. Cyclosporin A specifically inhibits function of nuclear proteins involved in T cell activation. Science 1989; 246: 1617–1620.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • J. H. Miller
    • 1
  • B. Rouwé
    • 1
  • T. N. Gaitanos
    • 1
  • K. A. Hood
    • 1
  • K. P. Crume
    • 1
  • B. T. Bäckström
    • 2
  • A. C. La Flamme
    • 1
  • M. V. Berridge
    • 2
  • P. T. Northcote
    • 3
  1. 1.School of Biological SciencesVictoria University of WellingtonWellingtonNew Zealand
  2. 2.Malaghan Institute of Medical ResearchWellington SouthNew Zealand
  3. 3.School of Chemical and Physical SciencesVictoria University of WellingtonWellingtonNew Zealand

Personalised recommendations