Skip to main content
Log in

Characterization of 4-O-methyl-ascochlorin-induced apoptosis in comparison with typical apoptotic inducers in human leukemia cell lines

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Apoptosis can be induced by various stimuli such as the ligands of death receptors, chemotherapeutic drugs and irradiation. It is generally believed that chemotherapeutic drugs induce mitochondrial damage, cytochrome c release and activation of caspase-9, leading to apoptosis. Here, we found that an isoprenoid antibiotic, 4-O-methyl ascochlorin, significantly induces typical apoptotic events in Jurkat cells including the degradation of poly (ADP-ribose) polymerase, DNA fragmentation, activation of caspase-3, -9 and -8, and cytochrome c release from mitochondria. Similar to Fas stimulation, 4-O-methyl ascochlorin but not staurosporine, cycloheximide and actinomycin D, induced apoptosis in SKW6.4 cells, in which apoptosis is strongly dependent on death-inducing signaling-complex. Bcl-2 overexpression in Jurkat cells completely suppressed the apoptosis, but procaspase-9 processing was partially induced. A caspase-8 inhibitor, IETD-fmk, effectively suppressed poly (ADP-ribose) polymerase cleavage and cytochrome c release. However, 4-O-methyl ascochlorin induced apoptosis in Jurkat cells deficient of caspase-8 or Fas-associated death domain protein. These results suggest that 4-O-methyl ascochlorin induces apoptosis through the mechanism distinct from conventional apoptosis inducers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Webster DA, Gross J. Studies on possible mechanisms of programmed cell death in the chick embryo. Dev Biol 1970; 22: 157–184.

    CAS  PubMed  Google Scholar 

  2. Hengartner MO. The biochemistry of apoptosis. Nature 2000; 407: 770–776.

    Article  CAS  PubMed  Google Scholar 

  3. Susin SA, Lorenzo HK, Zamzami N, et al. Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 1999; 397: 441–446.

    Article  CAS  PubMed  Google Scholar 

  4. Li P, Nijhawan D, Budihardjo I, et al. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 1997; 91: 479–489.

    Article  CAS  PubMed  Google Scholar 

  5. Kluck RM, Bossy-Wetzel E, Green DR, Newmeyer DD. The release of cytochrome c from mitochondria: A primary site for Bcl-2 regulation of apoptosis. Science 1997; 275: 1132–1136.

    Article  CAS  PubMed  Google Scholar 

  6. Yang J, Liu X, Bhalla K, et al. Prevention of apoptosis by Bcl-2: Release of cytochrome c from mitochondria blocked. Science 1997; 275: 1129–1132.

    Article  CAS  PubMed  Google Scholar 

  7. Bossy-Wetzel E, Newmeyer DD, Green DR. Mitochondrial cytochrome c release in apoptosis occurs upstream of DEVD-specific caspase activation and independently of mitochondrial transmembrane depolarization. EMBO J 1998; 17: 37–49.

    Google Scholar 

  8. Wesselborg S, Engels IH, Rossmann E, Los M, Schulze-Osthoff K. Anticancer drugs induce caspase-8/FLICE activation and apoptosis in the absence of CD95 receptor/ligand interaction. Blood 1999; 93: 3053–3063.

    CAS  PubMed  Google Scholar 

  9. Nagata S, Golstein P. The Fas death factor. Science 1995; 267: 1449–1456.

    CAS  PubMed  Google Scholar 

  10. Kischkel FC, Hellbardt S, Behrmann I, et al. Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor. EMBO J 1995; 14: 5579–5588.

    CAS  PubMed  Google Scholar 

  11. Medema JP, Scaffidi C, Kischkel FC, et al. FLICE is activated by association with the CD95 death-inducing signaling complex (DISC). EMBO J 1997; 16: 2794–2804.

    CAS  PubMed  Google Scholar 

  12. Li H, Zhu H, Xu CJ, Yuan J. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 1998; 94: 491–501.

    CAS  PubMed  Google Scholar 

  13. Luo X, Budihardjo I, Zou H, Slaughter C, Wang X. Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 1998; 94: 481–490.

    CAS  PubMed  Google Scholar 

  14. Fulda S, Meyer E, Friesen C, Susin SA, Kroemer G, Debatin KM. Cell type specific involvement of death receptor and mitochondrial pathways in drug-induced apoptosis. Oncogene 2001; 20: 1063–1075.

    CAS  PubMed  Google Scholar 

  15. Tamura G, Suzuki S, Takatsuki A, Ando K, Arima K. Ascochlorin, a new antibiotic, found by the paper-disc agar-diffusion method. I. Isolation, biological and chemical properties of ascochlorin. (Studies on antiviral and antitumor antibiotics. I). J Antibiot 1968; 21: 539–544.

    CAS  PubMed  Google Scholar 

  16. Hosokawa T, Sawada M, Ando K, Tamura G. Enhanced excretion of fecal neutral sterols and the hypercholesterolemic properties of 4-O-methylascochlorin. Agric Biol Chem 1980; 44: 2461–2468.

    CAS  Google Scholar 

  17. Hosokawa T, Sawada M, Ando K, Tamura G. Alteration of cholesterol metabolism by 4-O-methylascochlorin in rats. Lipids 1981; 16: 433–438.

    CAS  PubMed  Google Scholar 

  18. Hosokawa T, Ando K, Tamura G. Alteration of cholesterol metabolism and hypocholesterolemic property of 4-O-methylascochlorin on controlled reverse-phase feeding rats. Agric Biol Chem 1982; 46: 775–781.

    CAS  Google Scholar 

  19. Hosokawa T, Ando K, Tamura G. An ascochlorin derivative, AS-6, potentiates insulin action in streptozotocin diabetic miceand rats. Agric Biol Chem 1982; 46: 775–781.

    CAS  Google Scholar 

  20. Hosokawa T, Ando K, Tamura G. An ascochlorin derivative, AS-6, reduces insulin resistance in the genetically obese diabetic mouse, db/db. Diabetes 1985; 34: 267–274.

    CAS  PubMed  Google Scholar 

  21. Hosokawa T, Okutomi T, Sawada M, Ando K, Tamura G. Unusual concentration of urine and prevention of polydipsia by fungal prenylphenols in DOCA hypertensive rats. Eur J Pharmacol 1981; 69: 429–438.

    CAS  PubMed  Google Scholar 

  22. Magae J, HosokawaT, Ando K, Nagai K, Tamura G. Antitumor protective property of an isoprenoid antibiotic, ascofuranone. J Antibiot 1982; 35: 1547–1552.

    CAS  PubMed  Google Scholar 

  23. Magae J, Suzuki S, Nagai K, Yamasaki M, Ando K, Tamura G. In vitro effects of an antitumor antibiotic, ascofuranone, on the murine immune system. Cancer Res 1986; 46: 1073–1078.

    CAS  PubMed  Google Scholar 

  24. Magae J, Hayasaki J, Matsuda Y, et al. Antitumor and antimetastatic activity of an antibiotic, ascofuranone, and activation of phagocytes. J Antibiot 1988; 41: 959–965.

    CAS  PubMed  Google Scholar 

  25. Togashi M, Masuda H, Kawada T, et al. PPAR? activation and adipocyte differentiation induced by AS-6, a prenyl-phenol antidiabetic antibiotic. J Antibiot 2002; 55: 417–422.

    CAS  PubMed  Google Scholar 

  26. Togashi M, Ozawa S, Abe S, et al. Ascochlorin derivatives as ligands for nuclear hormone receptors. J Med Chem 2003; 46: 4113–4123.

    CAS  PubMed  Google Scholar 

  27. Chang YC, Nakajima H, Illenye S, et al. Caspase-dependent apoptosis by ectopic expression of E2F-4. Oncogene 2000; 19: 4713–4720.

    CAS  PubMed  Google Scholar 

  28. Lee YS, Nakajima H, Tsuruga M, Magae J. Elimination of cell cycle regulators during caspase-3-dependent apoptosis caused by an immunosuppressant, FTY720. Biosci Biotech Biochem 2003; 67: 467–474.

    CAS  Google Scholar 

  29. Chauvin C, De Oliveira F, Ronot X, Mousseau M, Leverve X, Fontaine E. Rotenone inhibits the mitochondrial permeability transition-induced cell death in U937 and KB cells. J Biol Chem 2001; 276: 41394–41398.

    CAS  PubMed  Google Scholar 

  30. Scaffidi C, Fulda S, Srinivasan A, et al. Two CD95 (APO-1/Fas) signaling pathways. EMBO J. 1998; 17: 1675–1687.

    CAS  PubMed  Google Scholar 

  31. Juo P, Kuo CJ, Yuan J, Blenis J. Essential requirement for caspase-8/FLICE in the initiation of the Fas-induced apoptotic cascade. Curr Biol 1998; 8: 1001–1008.

    CAS  PubMed  Google Scholar 

  32. Fujita E, Egashira J, Urase K, Kuida K, Momoi T. Caspase-9 processing by caspase-3 via a feedback amplification loop in vivo. Cell Death Differ 2001; 8: 335–344.

    CAS  PubMed  Google Scholar 

  33. Nagahara Y, Ikekita M, Shinomiya T. Immunosuppressant FTY720 induces apoptosis by direct induction of permeability transition and release of cytochrome c from mitochondria. J Immunol 2000; 165: 3250–3259.

    CAS  PubMed  Google Scholar 

  34. Peter ME, Krammer PH. The CD95(APO-1/Fas) DISC and beyond. Cell Death Differ 2003; 10: 26–35.

    Article  CAS  PubMed  Google Scholar 

  35. Ferri KF, Kroemer G. Organelle-specific initiation of cell death pathways. Nat Cell Biol 2001; 3: E255–E263.

    CAS  PubMed  Google Scholar 

  36. Nakagawa T, Yuan J. Cross-talk between two cysteine protease families. Activation of caspase-12 by calpain in apoptosis. J Cell Biol 2000; 150: 887–894.

    Article  CAS  PubMed  Google Scholar 

  37. Nakagawa T, Zhu H, Morishima N, et al. Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature 2000; 403: 98–103.

    CAS  PubMed  Google Scholar 

  38. Han Z, Pantazis P, Wyche JH, Kouttab N, Kidd VJ, Hendrickson EA. A Fas-associated death domain protein-dependent mechanism mediates the apoptotic action of non-steroidal anti-inflammatory drugs in the human leukemic Jurkat cell line. J Biol Chem 2001; 276: 38748–38754.

    CAS  PubMed  Google Scholar 

  39. Thome M, Tschopp J. Regulation of lymphocyte proliferation and death by FLIP. Nat Rev Immunol 2001; 1: 50–58.

    CAS  PubMed  Google Scholar 

  40. Kennedy NJ, Kataoka T, Tschopp J, Budd RC. Caspase activation is required for T cell proliferation. J Exp Med 1999; 190: 1891–1896.

    CAS  PubMed  Google Scholar 

  41. Danial NN, Gramm CF, Scorrano L, et al. BAD and glucokinase reside in a mitochondrial complex that integrates glycolysis and apoptosis. Nature 2003; 424: 952–956.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Magae.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsuruga, M., Nakajima, H., Ozawa, S. et al. Characterization of 4-O-methyl-ascochlorin-induced apoptosis in comparison with typical apoptotic inducers in human leukemia cell lines. Apoptosis 9, 429–435 (2004). https://doi.org/10.1023/B:APPT.0000031456.09297.8f

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:APPT.0000031456.09297.8f

Navigation