Skip to main content
Log in

LPS-induced apoptosis is dependent upon mitochondrial dysfunction

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Bacterial infection induces apoptotic cell death in human monoblastic U937 cells that have been pretreated with interferon γ (U937IFN). Apoptosis occurs in a manner that is independent of bacterial virulence proteins. In the present study, we show that lipopolysaccharide (LPS), a membrane constituent of gram-negative bacteria, also induces apoptosis in U937IFN cells. LPS treatment led to the appearance of characteristic markers of apoptosis such as nuclear fragmentation and activation of caspases. While the caspase inhibitor Z-VAD-fmk prevented LPS-induced apoptosis as judged by its inhibition of nuclear fragmentation, it failed to inhibit cytochrome c release and loss of mitochondrial membrane potential. Transfection of peptides containing the BH4 (Bcl-2 homology 4) domain derived from the anti-apoptotic protein Bcl-XL blocked LPS-induced nuclear fragmentation and the limited digestion of PARP. These results suggest that LPS does not require caspase activation to induce mitochondrial dysfunction and that mitochondria play a crucial role in the regulation of LPS-mediated apoptosis in U937IFN cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Krammer PH. Nature 2000; 407: 789–795.

    Article  CAS  PubMed  Google Scholar 

  2. Kischkel FC, Hellbardt S, Behrmann I, et al. Embo J 1995; 14: 5579–5588.

    CAS  PubMed  Google Scholar 

  3. Green DR, Reed JC. Science 1998; 281: 1309–1312.

    Article  CAS  PubMed  Google Scholar 

  4. Zou H, Henzel WJ, Liu X, Lutschg A, Wang X. Cell 1997; 90: 405–413.

    Article  CAS  PubMed  Google Scholar 

  5. Gross A, McDonnell JM, Korsmeyer SJ. Genes Dev 1999; 13: 1899–1911.

    CAS  PubMed  Google Scholar 

  6. Borner C, Martinou I, Mattmann C, et al. J Cell Biol 1994; 126: 1059–1068.

    Article  CAS  PubMed  Google Scholar 

  7. Hanada M, Aime-Sempe C, Sato T, Reed JC. J Biol Chem 1995; 270: 11962–11969.

    CAS  PubMed  Google Scholar 

  8. Hunter JJ, Bond BL, Parslow TG. Mol Cell Biol 1996; 16: 77–883.

    Google Scholar 

  9. Lee LC, Hunter JJ, Mujeeb A, Turck C, Parslow TG. J Biol Chem 1996; 271: 23284–23288.

    CAS  PubMed  Google Scholar 

  10. Huang DC, Adams JM, Cory S. Embo J 1998; 17: 1029–1039.

    CAS  PubMed  Google Scholar 

  11. Choi KB, Wong F, Harlan JM, Chaudhary PM, Hood L, Karsan A. J Biol Chem 1998 273: 20185–20188.

    CAS  PubMed  Google Scholar 

  12. Bannerman DD, Tupper JC, Ricketts WA, Bennett CF, Winn RK, Harlan JM. J Biol Chem 2001; 276: 14924–14932.

    CAS  PubMed  Google Scholar 

  13. Hull C, McLean G, Wong F, Duriez PJ, Karsan A. J Immunol 2002; 169: 2611–2618.

    CAS  PubMed  Google Scholar 

  14. Aliprantis AO, Yang RB, Weiss DS, Godowski P, Zychlinsky A. Embo J 2000; 19: 3325–3336.

    CAS  PubMed  Google Scholar 

  15. Aliprantis AO, Yang RB, Mark MR, et al. Science 1999; 285: 736–739.

    CAS  PubMed  Google Scholar 

  16. Aliprantis AO, Weiss DS, Zychlinsky A. J Endotoxin Res 2001; 7: 287–291.

    CAS  PubMed  Google Scholar 

  17. Aliprantis AO, Weiss DS, Radolf JD, Zychlinsky A. Infect Immun 2001; 69: 6248–6255.

    CAS  PubMed  Google Scholar 

  18. Nonaka T, Kuwae A, Sasakawa C, Imajoh-Ohmi S. FEMS Microbiol Lett 1999; 174: 89–95.

    CAS  PubMed  Google Scholar 

  19. Nonaka T, Kuwabara T, Mimuro H, Kuwae A, Imajoh-Ohmi S. Microbiology 2003; 149: 2513–2527.

    CAS  PubMed  Google Scholar 

  20. Niikura Y, Nonaka T, Imajoh-Ohmi S. J Biochem (Tokyo) 2002; 132: 53–62.

    CAS  Google Scholar 

  21. Ekert PG, Silke J, Hawkins CJ, Verhagen AM, Vaux DL. J Cell Biol 2001; 152: 483–490.

    CAS  PubMed  Google Scholar 

  22. Waterhouse NJ, Goldstein JC, von Ahsen O, Schuler M, Newmeyer DD, Green DR. J Cell Biol 2001; 153: 319–328.

    CAS  PubMed  Google Scholar 

  23. Green M, Loewenstein PM. Cell 1988 55: 1179–1188.

    CAS  PubMed  Google Scholar 

  24. Derossi D, Calvet S, Trembleau A, Brunissen A, Chassaing G, Prochiantz A. J Biol Chem 1996; 271: 18188–18193.

    CAS  PubMed  Google Scholar 

  25. Chao DT, Korsmeyer SJ. Annu Rev Immunol 1998; 16: 395–419.

    CAS  PubMed  Google Scholar 

  26. Shimizu S, Konishi A, Kodama T, Tsujimoto Y. Proc Natl Acad Sci USA 2000; 97: 3100–3105.

    CAS  PubMed  Google Scholar 

  27. Budihardjo I, Oliver H, Lutter M, Luo X, Wang X. Annu Rev Cell Dev Biol 1999; 15: 269–290.

    CAS  PubMed  Google Scholar 

  28. Chen M, Wang J. Apoptosis 2002; 7: 313–319.

    CAS  PubMed  Google Scholar 

  29. Cecconi F. Cell Death Differ 1999; 6: 1087–1098.

    CAS  PubMed  Google Scholar 

  30. Imajoh-Ohmi S, Kawaguchi T, Sugiyama S, Tanaka K, Omura S, Kikuchi H. Biochem Biophys Res Commun 1995; 217: 1070–1077

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Imajoh-Ohmi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuwabara, T., Imajoh-Ohmi, S. LPS-induced apoptosis is dependent upon mitochondrial dysfunction. Apoptosis 9, 467–474 (2004). https://doi.org/10.1023/B:APPT.0000031453.90821.6a

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:APPT.0000031453.90821.6a

Navigation