Skip to main content

Advertisement

Log in

Immune modulation and apoptosis induction: Two sides of the antitumoral activity of imiquimod

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Imiquimod, the first member of the imidazoquinoline family of immune response modifiers, has proven good clinical efficacy against basal cell carcinomas and actinic keratoses in several independent studies. In addition, there is recent evidence that imiquimod is also efficacious against other tumors such as cutaneous metastases of malignant melanoma or vascular tumors. Imiquimod exerts its antitumoral effect, at least in part, through binding to TLR-7 and TLR-8 on dendritic cells followed by secretion of a multitude of proinflammatory cytokines. The net result of this proinflammatory activity is a profound tumor-directed cellular immune response. However, recent experimental and clinical data indicate that imiquimod also possesses considerable direct pro-apoptotic activity against tumor cells both in vitro and in vivo. This novel mode of action appears to be independent of membrane bound death receptors, but involves caspase activation. Induction of apoptosis by imiquimod is, at least in part, presumably mediated through Bcl-2-dependent release of mitochondrial cytochrome c and subsequent activation of caspase-9. The structural analogue, resiquimod, exhibited very limited, if any, such pro-apoptotic activity, possibly due to its lacking ability to enter the cell. Bypassing molecular mechanisms of apoptosis deficiency by a topical compound may be of great utility for treating certain cutaneous tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cleaver JE, Bootsma D. Xeroderma pigmentosum: Biochemical and genetic characteristics. Annu Rev Genet 1975; 9: 19–38.

    CAS  PubMed  Google Scholar 

  2. Clendenning WE, Block JB, Radde JG. Basal cell nevus syndrome. Arch Dermatol 1964; 90: 38–53.

    CAS  PubMed  Google Scholar 

  3. Gailani MR, Stahle-Bäckdahl M, Leffell DJ. The role of the human homologue of Drosophila patched in sporadic basal cell carcinomas. Nat Genet 1996; 14: 78–81.

    CAS  PubMed  Google Scholar 

  4. Hahn H, Wicking C, Zaphiropoulos PG. Mutations of the human homolog of Drosophila patched in the nevoid basal cell carcinoma syndrome. Cell 1996; 85: 841–851.

    CAS  PubMed  Google Scholar 

  5. Lear JT, Heagerty AHM, Smith A. Multiple cutaneous basal cell carcinomas: Glutathione S-transferase (GSTM1, GSTT1) and cytochrome P450 (CYP2D6, CYP1A1) polymorphism influence tumor numbers and accural. Carcinogenesis 1996; 17: 1891–1896.

    CAS  PubMed  Google Scholar 

  6. Wolter M, Reifenberger J, Sommer C. Mutations in the human homologue of the Drosophila segment polarity gene patched (PTCH) in sporadic basal cell carcinomas of the skin and primitive neuroectodermal tumors of the central nervous system. Cancer Res 1997; 57; 2581–2585.

    CAS  PubMed  Google Scholar 

  7. Ziegler A, Jonason AS, Leffell DJ, et al. Sunburn and p53 in the onset of skin cancer. Nature 1994; 372: 773–776.

    Article  CAS  PubMed  Google Scholar 

  8. Dazard JE, Gal H, Amariglio N, Rechavi G, Domany E, Givol D. Genome-wide comparison of human keratinocyte and squamous cell carcinoma responses to UVB irradiation: implications for skin and epithelial cancer. Oncogene 2003; 22: 2993–3006.

    Article  CAS  PubMed  Google Scholar 

  9. McKee RM. Epidermal skin tumors. In: Breathnach SM, ed. Textbook of Dermatology. New York: Blackwell Science, 1998: 1656–1687.

    Google Scholar 

  10. Popp S, Waltering S, Herbst C, Moll I, Boukamp P. UV-B-type mutations and chromosomal imbalances indicate common pathways for the development of Merkel and skin squamous cell carcinomas. Int J Cancer 2002; 99: 352–360.

    Article  CAS  PubMed  Google Scholar 

  11. Thompson CB. Apoptosis in the pathogenesis and treatment of disease. Science 1995; 267: 1456–1462.

    CAS  PubMed  Google Scholar 

  12. Callen JP. Possible precursors to epidermal malignancies. In Baker D, ed. Cancer of the Skin. New York: Saunders, 1991: 27–30.

    Google Scholar 

  13. Walder BK, Robertson MR, Jeremy DR. Skin cancer and immunosuppression. Lancet 1971; ii: 1282–1283.

    Article  Google Scholar 

  14. Kurwa HA, Marks R. Protracted cutaneous disorders in association with low CD4+ lymphocyte counts. Br J Dermatol 1995; 133: 625–629.

    CAS  PubMed  Google Scholar 

  15. Sitz KV, Keppen M, Johnson DF. Metastatic basal cell carcinoma in acquired immunodeficiency syndrome-related complex. JAMA 1987; 257: 340–343.

    CAS  PubMed  Google Scholar 

  16. Schön MP, Reifenberger J, von Schmiedeberg S, et al, Mutliple basal cell carcinomas associated with hairy cell leukemia. Br J Dermatol 1999; 140: 150–153.

    PubMed  Google Scholar 

  17. Cornell RC, Greenway HT, Tucker SB. Intralesional interferon therapy for basal cell carcinoma. J Am Acad Dermatol 1990; 23: 694–700.

    CAS  PubMed  Google Scholar 

  18. Edwards L, Whiting D, Rogers D, Luck K, Smiles KA. The effect of intralesional interferon gamma on basal cell carcinoma. J Am Acad Dermatol 1990; 22: 496–500.

    CAS  PubMed  Google Scholar 

  19. Kooy AJW, Tank B, Vuzevski VD, van Joost T, Prens EP. Expression of interferon-gamma receptors and interferon-gamma-induced up-regulation of intercellular adhesion molecule-1 in basal cell carcinoma; decreased expression of IFN-γR and shedding of ICAM-1 as means to escape immune surveillance. J Pathol 1998; 184: 169–176.

    CAS  PubMed  Google Scholar 

  20. Telfer NR, Colver GB, Bowers PW. Guidelines for the management of basal cell carcinoma. British Association of Dermatologists. Br. J Dermatol 1999; 141: 415–423.

    CAS  PubMed  Google Scholar 

  21. van der Straaten M, Lee P, Weitzul S, Cockerell CJ, Tyring SK. Advances in the treatment of basal cell carcinoma: The promise of pharmacologic therapy. Adv Dermatol 2000; 16: 299–318.

    PubMed  Google Scholar 

  22. Wennberg AM. Basal cell carcinoma—new aspects of diagnosis and treatment. Acta Der Venereol Suppl 2000; 209: 5–25.

    CAS  Google Scholar 

  23. Beutner KR, Geisse JK, Helman D, Fox TL, Ginkel A, Owens ML. Therapeutic response of basal cell carcinoma to the immune response modifier imiquimod 5% cream. J Am Acad Dermatol 1999; 41: 1002–1007.

    CAS  PubMed  Google Scholar 

  24. Hannuksela-Svahn A, Nordal E, Christensen OB. Treatment of multiple basal cell carcinomas in the scalp with imiquimod 5% cream. Acta Derm Venereol 2000; 80: 381–382.

    CAS  PubMed  Google Scholar 

  25. Kagy MK, Amonette R. The use of imiquimod 5% cream for the treatment of superficial basal cell carcinomas in a basal cell nevus syndrome patient. Dermatol Surg 2000; 26: 577–578; discussion 578–579.

    Article  CAS  PubMed  Google Scholar 

  26. Marks R, Gebauer K, Shumack S, et al. Imiquimod 5% cream in the treatment of superficial basal cell carcinoma: Results of a multicenter 6–week dose-response trial. J Am Acad Dermatol 2001; 44: 807–813.

    Article  CAS  PubMed  Google Scholar 

  27. Tyring S. Imiquimod applied topically: A novel immune response modifier. Skin Therapy Lett 2001; 6: 1–4.

    CAS  Google Scholar 

  28. Stockfleth E, Meyer T, Benninghoff B, Christophers E. Successful treatment of actinic keratosis with imiquimod cream 5%: A report of six cases. Br J Dermatol 2001; 144: 1050–1053.

    Article  CAS  PubMed  Google Scholar 

  29. Sidky YA, Borden EC, Weeks Ce, Reiter MJ, Hatcher JF, Bryan GT. Inhibition of murine tumor growth by an interferon-inducing imidazoquinoline. Cancer Res 1992; 52: 3528–3533.

    CAS  PubMed  Google Scholar 

  30. Stanley MA. Mechanism of action of imiquimod. Papillomavirus Rep 1999; 10: 23–29.

    Google Scholar 

  31. Schön M, Bong AB, Drewniok C, et al. Tumor-selective induction of apoptosis and the small-molecular immune response modifier imiquimod. J Natl Cancer Inst 2003; 95: 1138–1149.

    PubMed  Google Scholar 

  32. Sidbury R, Neuschler N, Neuschler E, et al. Topically applied imiquimod inhibits vascular tumor growth in vivo. J Invest Dermatol 2003; 121: 1205–1209.

    Article  CAS  PubMed  Google Scholar 

  33. Sullivan TP, Dearaujo T, Vincek V, Berman B. Evaluation of superficial basal cell carcinomas after treatment with imiquimod 5% cream or vehicle for apoptosis and lymphocyte phenotyping. Dermatol Surg 2003; 29: 1181–1186.

    Article  PubMed  Google Scholar 

  34. Schön MP, Wienrich BG, Drewniok C, et al. Death receptor-independent apoptosis in malignant melanoma induced by the small-molecular immune response modifier imiquimod. J Invest Dermatol 2004; in press.

  35. Gibson SJ, Imbertson LM, Wagner TL. Cellular requirements for cytokine production in response to the immunomodulators imiquimod and S-27609. J Interferon Cytokine Res 1995; 15: 537–545.

    CAS  PubMed  Google Scholar 

  36. Megyeri K, Au W-C, Rosztoczy I. Stimulation of interferon and cytokine gene expression by imiquimod and stimulation by sendai virus utilize similar signal transduction pathways. Mol Cell Biol 1995; 15: 2207–2218.

    CAS  PubMed  Google Scholar 

  37. Miller RL, Bimarchu W, Gs. Cytokine induction by imiquimod, preclinical results and pharmacology. Chemother J. 1994; 4: 148–149.

    Google Scholar 

  38. Reiter MJ, Testerman TL, Miller RL, Weeks CE, Tomai MA. Cytokine induction in mice by the immunomodulator imiquimod. J Leukocyte Biol 1994; 55: 234–240.

    CAS  PubMed  Google Scholar 

  39. Gibson SJ, Lindh JM, Riter TR, et al. Plasmacytoid dendritic cells produce cytokines and mature in response to the TLR7 agonists, imiquimod and resiquimod. Cell Immunol 2002; 218: 74–86.

    CAS  PubMed  Google Scholar 

  40. Hemmi H, Kaisho T, Takeuchi O, et al. Small anti-viral compounds activate immune cells via the TLR8 MyD88–dependent signaling pathway. Nat Immunol 2002; 3: 196–200.

    Article  CAS  PubMed  Google Scholar 

  41. Jurk M, Heil F, Vollmer J, et al. Human TLR7 or TLR8 independently confer responsiveness to the antiviral compound R-848. Nature Immunol 2002; 3: 499.

    CAS  Google Scholar 

  42. Wagner TL, Horton Vl, Carlson GL. Induction of cytokines in Cynomolgus monkeys by the immune response modifers, imiquimod, S-27609 and S-28463. Cytokine 1997; 9: 837–845.

    CAS  PubMed  Google Scholar 

  43. Weeks CE, Gibson SJ. Induction of interferon and other cytokines by imiquimod and its hydroxylated metabolite R-842 in human blood cells in vitro. J Interferon Cytokine Res 1994; 14: 81–85.

    CAS  Google Scholar 

  44. Suzuki H, Wang B, Shivji GM, et al. Imiquimod, a topical immune response modifier, induces migration of Langerhans cells. J Invest Dermatol 2000; 114: 135–141.

    Article  CAS  PubMed  Google Scholar 

  45. Burns R, Ferbel B, Tomai M, Miller R, Gaspari A. The imidazoquinolines, imiquimod and R-848, induce functional, but not phenotypic, maturation of human epidermal Langerhans cells. Clin Immunol 2000; 94: 13–23.

    Article  CAS  PubMed  Google Scholar 

  46. Harrison CJ, Miller RL, Bernstein DI. Posttherapy suppression of genital herpes simplex virus (HSV) recurrences and enhancement of HSV-specific T-cell memory by imiquimod in guinea pigs. Antimicrob Agents Chemother 1994; 38: 2059–2064.

    CAS  PubMed  Google Scholar 

  47. Bernstein DI, Harrison CJ, Tepe ER, Shahwan A, Miller RL. Effect of imiquimod as an adjuvant for immunotherapy of genital HSV in guinea pigs. Vaccine 1995; 13: 72–76.

    CAS  PubMed  Google Scholar 

  48. Bernstein DI, Harrison CJ, Tomai MA, Miller RL. Daily or weekly therapy with resiquimod (R848) reduces genital recurrences in herpes simplex virus-infected guinea pigs during and after treatment. J Infect Dis 2000; 183: 844–849.

    Google Scholar 

  49. Wagner TL, Ahonen CL, Couture AM, et al. Modulation of TH1 and TH2 cytokine production with the immune response modifiers, R-848 and imiquimod. Cell Immunol 1999; 191: 10–19.

    CAS  PubMed  Google Scholar 

  50. Imbertson LM, Beaurline JM, Couture AM, et al. Cytokine induction in hairless mouse and rat skin after topical application of the immune respnose modifiers imiquimod and S-28463. J Invest Dermatol 1998; 110: 734–739.

    Article  CAS  PubMed  Google Scholar 

  51. Tomai MA, Gibson SJ, Imbertson LM. Immunomodulating and antiviral activities of the imidazoquinoline S-28463. Antiviral Res 1995; 28: 253–264.

    CAS  PubMed  Google Scholar 

  52. Spruance SL, Tyring SK, Smith MH, Meng TC. Application of a topically-applied immune response modifier, resiquimod gel, to modify the recurrence rate of genital herpes: A pilot study. J Infect Dis 2001; 184: 196–200.

    CAS  PubMed  Google Scholar 

  53. Dirsch VM, Stuppner H, Vollmar AM. Helenalin triggers a CD95 death receptor-independent apoptosis that is not affected by overexpression of Bcl-XL or Bcl-2. Cancer Res 2001; 61: 5817–5823.

    CAS  PubMed  Google Scholar 

  54. Kaufmann SH, Earnshaw WC. Induction of apoptosis by cancer chemotherapy. Exp Cell Res 2000; 256: 42–49.

    CAS  PubMed  Google Scholar 

  55. Sun XM, MacFarlane M, Zhuang J, Wolf BB, Green DR, Cohen GM. Distinct caspase cascades are initiated in receptor-mediated and chemical-induced apoptosis. J Biol Chem 1999; 274: 5053–5060.

    CAS  PubMed  Google Scholar 

  56. Müller-Wieprecht V, Riebeling C, Stooss A, Orfanos CE, Geilen CC. Bcl-2 transfected HaCaT keratinocytes resist apoptotic signals of ceramides, tumor necrosis factor alpha, and 1–alpha, 25–dihydroxyvitamin D(3). Arch Dermatol Res 2000; 292: 455–462.

    PubMed  Google Scholar 

  57. Ivanov VN, Bhoumik A, Ronai Z. Death receptors and melanoma resistance to apoptosis. Oncogene 2003; 22: 3152–3161.

    CAS  PubMed  Google Scholar 

  58. Özören N, El-Deiry WS. Cell surface death receptor signaling in normal and cancer cells. Semin Cancer Biol 2003; 13: 135–147.

    PubMed  Google Scholar 

  59. MacFarlane M. TRAIL-induced signalling and apoptosis, Toxicol Lett 2003; 139: 89–97.

    CAS  PubMed  Google Scholar 

  60. Cryns V, Yuan J. Proteases to die for. Genes Dev 1999; 12: 1551–1570.

    Google Scholar 

  61. Abe K, Kurakin A, Mohseni-Maybodi M, Kay B. Khosravi-Far R, The complexity of TNF-related apoptosis-inducing ligand. Ann N Y Acad Sci 2000; 926: 52–63.

    CAS  PubMed  Google Scholar 

  62. Sheikh MS, Fornace AJ. Death and decoy receptors and p53–mediated apoptosis. Leukemia 2000; 14: 1509–1513.

    CAS  PubMed  Google Scholar 

  63. Raisova M, Hossini AM, Eberle J, et al. The bax-bcl-2 ratio determines the susceptibility of human melanoma cells to CD95/Fas-mediated apoptosis. J Invest Dermatol 2001; 117: 333–340.

    CAS  PubMed  Google Scholar 

  64. Bong AB, Bonnekoh B, Franke I, Schön MP, Ulrich J, Gollnick H. Imiquimod, a novel immune response modifier, in the treatment of cutaneous metastases of malignant melanoma. Dermatology 2002; 205: 135–138.

    Article  CAS  PubMed  Google Scholar 

  65. Steinmann A, Funk JO, Schuler G, von den Driesch P. Topical imiquimod treatment of a cutaneous melanoma metastasis. J Am Acad Dermatol 2000; 43: 555–556.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. P. Schön.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schön, M.P., Schön, M. Immune modulation and apoptosis induction: Two sides of the antitumoral activity of imiquimod. Apoptosis 9, 291–298 (2004). https://doi.org/10.1023/B:APPT.0000025805.55340.c3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:APPT.0000025805.55340.c3

Navigation