Skip to main content
Log in

Velocity and Passive Scalar Characteristics in a Round Jet with Grids at the Nozzle Exit

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

Velocity and passive scalar (temperature) measurements have been made in the near field of a round jet with and without obstructing grids placed at the jet exit. The Reynolds number Re D (based on the exit centreline velocity and nozzle diameter) is 4.9 × 104 and the flow is incompressible, while the temperature rise does not affect the velocity behaviour. The streamwise development and radial spreading of the passive scalar are attenuated, relative to the unobstructed jet. Close to the jet outlet, the spatial similarity of the moments (up to the third-order) of velocity fluctuations is improved, when the jet is perturbed. An explanation, based on the reduced effect of the large coherent structures in the developing region, is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Antonia, R.A. and Bilger, R.W., The heated round jet in a coflowing stream. AIAA J. 14(11) (1976) 1541-1547.

    Google Scholar 

  2. Antonia, R.A., Chambers, A.J. and Hussain, A.K.M.F., Errors in simultaneous measurements of temperature and velocity in the outer part of a heated jet. Phys. Fluids 23(5) (1980) 871-874.

    Google Scholar 

  3. Arbey, H. and Williams, J.E.F., Active cancellation of pure tones in an excited jet. J. Fluid Mech. 149 (1984) 445-454.

    Google Scholar 

  4. Batchelor, G.K., The Theory of Homogeneous Turbulence. Cambridge University Press, Cambridge (1953).

    Google Scholar 

  5. Benedict, L.H. and Gould, R.D., Towards better uncertainty estimates for turbulence statistics. Exp. Fluids 22 (1996) 129-136.

    Google Scholar 

  6. Boersma, B.J., Brethouwer, G. and Nieuwstadt, F.T.M., A numerical investigation on the effect of the inflowconditions on the self-similar region of a round jet. Phys. Fluids 10 (1998) 899-909.

    Google Scholar 

  7. Browand, F.K. and Laufer, J., The role of large scale structures in the initial development of circular jets. In: Turbulence in Liquids,Vol. 5, University of Missouri-Rolla, (1975) pp. 333-344.

    Google Scholar 

  8. Browne, L.W.B., Antonia, R.A. and Chua, L.P., Calibration of X-probes for turbulent flow measurements. Exp. Fluids 7 (1989) 201-208.

    Google Scholar 

  9. Burattini, P., Antonia, R.A., Rajagopalan, S. and Stephens, M., Effect of initial conditions on the near-field development of a round jet. Exp. Fluids (2004), 001 10.1007/500348-004-0714-4.

  10. Buresti, G., Petagna, P. and Talamelli, A., Experimental investigation on the turbulent near-field of coaxial jet configurations. In: Rodi, W. and Bergeles, G. (eds.) Engineering Turbulence Modelling and Experiments 3, Elsevier (1996) pp. 541-550.

  11. Cant, R., Castro, I. and Walklate, P., Plane jets impinging on porous walls. Exp. Fluids 32 (2002) 16-26.

    Google Scholar 

  12. Chevray, R. and Tutu, N.K., Intermittency and preferential transport of heat in a round jet. J. Fluid Mech. 88 (1978) 133-160.

    Google Scholar 

  13. Chua, L.P. and Antonia, R.A., The turbulent interaction region of a circular jet. Int. Comm. Heat Mass Transfer 13 (1986) 545-558.

    Google Scholar 

  14. Comte-Bellot, G. and Corrsin, S., The use of a contraction to improve the isotropy of grid-generated turbulence. J. Fluid Mech. 25 (1966) 657-682.

    Google Scholar 

  15. Corrsin, S. and Uberoi, M.S., Further experiments on the flow and heat transfer in a heated turbulent air jet. N.A.C.A. Tech. Note 998 (1950).

  16. Crow, S.C. and Champagne, F.H., Orderly structure in jet turbulence. J. Fluid Mech. 48 (1971) 547-591.

    Google Scholar 

  17. Drobniak, S., Elsner, J.W. and El-Kassem, E.-S.A., The relationship between coherent structures and heat transfer processesin the initial region of a round jet. Exp. Fluids 24 (1998) 225-237.

    Google Scholar 

  18. Farge, M.: Wavelet transforms and their application to turbulence. Ann. Rev. Fluid Mech. 24 (1992) 395-457.

    Google Scholar 

  19. Gad-el-Hak, M. and Corrsin, S., Measurements of the nearly isotropic turbulence behind a uniform jet grid. J. Fluid Mech. 62 (1974) 115-143.

    Google Scholar 

  20. George, W.K., The self-preservation of turbulent flows and its relation to initial conditions and coherent structures. In: George, W.K. and Arndt, R. (eds.), Advances in Turbulence. Springer, Berlin, (1989) pp. 39-74.

    Google Scholar 

  21. Gordeyev, S.V. and Thomas, F.O., Temporal subharmonic amplitude and phase behavior in a jet shear layer: wavelet analysis and Hamiltonian formulation. J. Fluid Mech. 394 (1999) 205-240.

    Google Scholar 

  22. Ho, C.M. and Huang, L.S., Subharmonics and vortex merging in mixing layers. J. Fluid Mech. 119 (1982) 443-473.

    Google Scholar 

  23. Hussain, A.K.M.F. Coherent structures-Reality and myth. Phys. Fluids 26 (1983) 2816-2850.

    Google Scholar 

  24. Hussain, A.K.M.F. and Zaman, K.B.M.Q., Vortex pairing in a circular jet under controlled excitation. Part 2. Coherent structure dynamics. J. Fluid Mech. 101 (1980) 493-544.

    Google Scholar 

  25. Hussain, A.K.M.F. and Zaman, K.B.M.Q., The 'preferred mode' of the axisymmetric jet. J. Fluid Mech. 110 (1981) 39-71.

    Google Scholar 

  26. Hussein, H.J. Capp, S.P. and George, W.K., Velocity measurements in a high-Reynolds-number, momentum-conserving, axisymmetric, turbulent jet. J. Fluid Mech. 258 (1994) 31-75.

    Google Scholar 

  27. Hwang, W. and Eaton, J.K., Creating homogeneous and isotropic turbulence without a mean flow. Exp. Fluids, 36 (2004) 444-454.

    Google Scholar 

  28. Jordan, D., Miksad, R.W. and Powers, E.J., Implementation of the continuous wavelet transform for digital time series analysis. Rev. Sci. Instrum. 68(3) (1997) 1484-1494.

    Google Scholar 

  29. LaRue, J.C., Deaton, T. and Gibson, C.H., Measurement of high-frequency turbulent tempera-ture. Rev. Sci. Instrum. 46 (1975) 757-764.

    Google Scholar 

  30. Launder, B.E., Heat and mass transport. In: Bradshaw, P. (ed.), Topics in Applied Physics. Springer, Berlin (1976) pp. 231-287.

    Google Scholar 

  31. Laws, E.M. and Livesey, J.L., Flow through screens. Ann. Rev. Fluid Mech. 10 (1978) 247-266.

    Google Scholar 

  32. Lemay, J., Benaissa, A. and Antonia, R.A., Correction of cold-wire response for mean temper-ature dissipation rate measurements. Exp. Thermal Fluid Sci. 27(2) (2003) 133-143.

    Google Scholar 

  33. Lubbers, C.L., Brethouwer, G. and Boersma, B.J., Simulation of the mixing of a passive scalar in a round turbulent jet. Fluid Dyn. Res. 28 (2001) 189-208.

    Google Scholar 

  34. Mi, J., Nobes, D.S. and Nathan, G.J., Influence of jet exit conditions on the passive scalar field of an axisymmetric free jet. J. Fluid Mech. 432 (2001) 91-125.

    Google Scholar 

  35. Mohamed, M.S. and LaRue, J.C., The decay power law in grid-generated turbulence. J. Fluid Mech. 219 (1990) 195-214.

    Google Scholar 

  36. Narayanan, S. and Hussain, F., Chaos control in open flows-Experiments in a circular jet. AIAA Paper (1997) 97-1822.

  37. Panchapakesan, N.R. and Lumley, J.L., Turbulence measurements in axisymmetric jets of air and helium. Part 1. Air jet. J. Fluid Mech. 246 (1993) 197-223.

    Google Scholar 

  38. Parker, R., Rajagopalan, S. and Antonia, R.A., Control of an axisymmetric jet using a passive ring. Exp. Therm. Fluid Sci. 27(5) (2003) 545-552.

    Google Scholar 

  39. Parker, R., Rajagopalan, S. and Antonia, R.A., Interaction of acoustic excitation with a passive ring in an axisymmetric jet. In: Kasagi, N. Eaton, J.K. Friedrich, R. Humphrey, J.A.C. Leschziner, M.A. and Miyauchi, T. (eds.), Turbulence and Shear Flow Phenomena-3,Vol. 2, Sendai, Japan (2003) pp. 519-524.

  40. Tong, C. and Warhaft, Z., Turbulence suppression in a jet by means of a fine ring. Phys. Fluids 6(1) (1994) 328-333.

    Google Scholar 

  41. Wiltse, J.M. and Glezer, A., Direct excitation of small-scale motions in free shear flows. Phys. Fluids 10(8) (1998) 2026-2036.

    Google Scholar 

  42. Xu, G. and Antonia, R.A., Effect of different initial conditions on a turbulent round free jet. Exp. Fluids 33 (2002) 677-683.

    Google Scholar 

  43. Xu, G. and Antonia, R.A., Effect of initial conditions on the temperature field of a turbulent round free jet. Int. Comm. Heat Mass Transfer 29(8) (2002) 1057-1068.

    Google Scholar 

  44. Zaman, K.B.M.Q. and Hussain, A.K.M.F., Vortex pairing in a circular jet under controlled excitation. Part 1. General jet response. J. Fluid Mech. 101 (1980) 449-491.

    Google Scholar 

  45. Zhang, Y., Experimental studies of the turbulence structures of impinging reacting jets using time-resolved particle image velocimetry visualisation, hot wire anemometry and acoustic signal processing. Exp. Fluids 29(7) (2000) S282-S290.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Burattini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burattini, P., Djenidi, L. Velocity and Passive Scalar Characteristics in a Round Jet with Grids at the Nozzle Exit. Flow, Turbulence and Combustion 72, 199–218 (2004). https://doi.org/10.1023/B:APPL.0000044412.79451.64

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:APPL.0000044412.79451.64

Navigation