Skip to main content
Log in

Possible Effects of Small-Scale Intermittency in Turbulent Reacting Flows

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

It is now well established that quantities such as energy dissipation, scalar dissipation and enstrophy possess huge fluctuations in turbulent flows, and that the fluctuations become increasingly stronger with increasing Reynolds number of the flow. The effects of this small-scale “intermittenc” on various aspects of reacting flows have not been addressed fully. This paper draws brief attention to a few possible effects on reaction rates, flame extinction, flamelet approximation, conditional moment closure methods, and so forth, besides commenting on possible effects on the resolution requirements of direct numerical simulations of turbulence. We also discuss the likelihood that large-amplitude events in a given class of shear flows are characteristic of that class, and that, plausible estimates of such quantities cannot be made, in general, on the hypothesis that large and small scales are independent. Finally, we briefly describe some ideas from multifractals as a potentially useful tool for an economical handling of a few of the problems touched upon here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liñán, A. and Williams, F.A., Fundamental Aspects of Combustion. Oxford University Press, New York (1993).

    Google Scholar 

  2. Bilger, R.W., Future progress in turbulent combustion research. Prog. Energy Combust. Sci. 26 (2000) 367-380.

    Google Scholar 

  3. Peters, N., Turbulent Combustion. Cambridge University Press, Cambridge, England (2000).

    Google Scholar 

  4. Frisch, U., Turbulence. Cambridge University Press, Cambridge, England (1995).

    Google Scholar 

  5. Sreenivasan, K.R. and Antonia, R.A., The phenomenology of small-scale turbulence. Ann. Rev. Fluid Mech. 29 (1997) 435-472.

    Google Scholar 

  6. Corrsin, S. and Kistler, A.L., Free stream boundaries of turbulent flows. N.A.C.A. Report 1274 (1955).

  7. Libby, P.A. and Williams, F.A., Fundamental aspects. In: Turbulent Reacting Flows. Topics Appl. Phys. 44 (1980) 1-43.

    Google Scholar 

  8. Kuznetsov, V.R., Praskovsky, A.A. and Sabelnikov, V.A., Fine-scale turbulence structure of intermittent shear flows. J. Fluid Mech. 243 (1992) 595-622.

    Google Scholar 

  9. Batchelor, G.K. and Townsend, A.A., The nature of turbulent motion at large wave numbers. Proceedings of the Roral Society of London, Series A,Vol. 199 (1948) pp. 238-255.

    Google Scholar 

  10. Sreenivasan, K.R. and Dhruva, B., Is there scaling in high-Reynolds-number turbulence? Progress Theor. Phys. Suppl. 130 (1998) 103-120.

    Google Scholar 

  11. Bilger, R.W., Turbulent jet diffusion flames. Progress Energy Combust. Sci. 1 (1976) 87-109.

    Google Scholar 

  12. Klimenko, A.Y. and Bilger, R.W., Conditional moment closure for turbulent combustion. Progress Energy Combust. Sci. 25 (1999) 595-687.

    Google Scholar 

  13. Overholt, M.R. and Pope, S.B., Direct numerical simulation of a statistically stationary, turbulent reacting flow. Combust. Theory Model. 3 (1999) 371-408.

    Google Scholar 

  14. Yeung, P.K., Lagrangian investigations of turbulence. Ann. Rev. Fluid Mech. 34 (2002) 115-142.

    Google Scholar 

  15. Kolmogorov, A.N., A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number. J. Fluid Mech. 13 (1962) 82-85.

    Google Scholar 

  16. She, Z.-S. and Waymire, E.C., Quantized energy cascade and log-Poisson statistics in fully developed turbulence. Phys. Rev. Lett. 74 (1995) 262-265.

    Google Scholar 

  17. Vainshtein, S.I., Most singular vortex structures in fully developed turbulence. arXiv: physics/0310008v1,1October 2003.

  18. Antonia, R.A., Satyaprakash, B.R. and Hussain, A.K.M.F., Statistics of fine-scale velocity in turbulent plane and circular jets. J. Fluid Mech. 119 (1982) 55-89.

    Google Scholar 

  19. Antonia, R.A., Hopfinger, E., Gagne Y. and Anselmet, F., Temperature structure functions in turbulent shear flows. Phys. Rev. A 30 (1984) 2705-2708.

    Google Scholar 

  20. Mydlarski, L. and Warhaft, Z., Passive scalar statistics in high-Péclet-number grid turbulence. J. Fluid Mech. 358 (1998) 135-175.

    Google Scholar 

  21. Meneveau, C., Sreenivasan, K.R., Kailasnath, P. and Fan, M.S., Joint multifractal measures: Theory and applications to turbulence. Phys. Rev. A 41 (1990) 894-913.

    Google Scholar 

  22. Praskovsky, A. and Oncley, S., Comprehensive measurements of the intermittency exponent in high Reynolds number turbulent flows. Fluid Dyn. Res. 21 (1997) 331-358.

    Google Scholar 

  23. Prasad, R.R., Meneveau, C. and Sreenivasan, K.R., Multifractal nature of the dissipation field of passive scalars in fully turbulent flows. Phys. Rev. Lett. 61 (1988) 74-77.

    Google Scholar 

  24. Sreenivasan, K.R., Antonia, R.A. and Danh, H.Q., Temperature dissipation fluctuations in a turbulent boundary layer. Phys. Fluids 20 (1977) 1238-1249.

    Google Scholar 

  25. Antonia, R.A. and Sreenivasan, K.R., On the log-normality of temperature dissipation in a turbulent boundary layer. Phys. Fluids 20 (1977) 1986-1988.

    Google Scholar 

  26. Aivalis, K.G., Measurement and analysis of scalar fluctuations in turbulent flows. Ph.D. Thesis, Department of Mechanical Engineering, Yale University (2004).

  27. Karpetis, A.N. and Barlow, R.S., Measurements of scalar dissipation in a turbulent piloted methane/air jet flame. Proceedings of the Combustion Institute,Vol. 29 (2002) pp. 1929-1936.

    Google Scholar 

  28. Bilger, R.W., Some aspects of scalar dissipation. Turbulence, Flow Combust. xx (2004) xx-xx.

  29. Sreenivasan, K.R. and Meneveau, C., Singularities of the the equations of fluid motion. Phys. Rev. A 38 (1988) 6287-6295.

    Google Scholar 

  30. Kaneda, Y., Ishihara, T., Yokokawa, M., Itakura, K. and Uno, A., Energy dissipation rate and energy spectrum in high resolution direct numerical simulations of turbulence in a periodic box. Phys. Fluids 15 (2003) L21-L24.

    Google Scholar 

  31. Yeung, P.K., Private Communication, September 2003.

  32. Dhruva, B., Experiments in high-Reynolds-number turbulence. Ph.D. thesis, Yale University, New Haven, Connecticut (1999).

  33. Kailasnath, P., Saylor, J.R. and Sreenivasan, K.R., Conditional scalar dissipation rates in turbu-lent wakes, jets and boundary layers. Phys. Fluids 5 (1993) 3207-3215.

    Google Scholar 

  34. Kolmogorov, A.N., The local structure of turbulence in incompressible viscous fluid for very large Reynolds number. Dokl. Acad. Nauk SSSR 30 (1941) 9-13; reprinted in Proc. Roy. Soc. Lond. A 434 (1991) 9-14.

    Google Scholar 

  35. Monin, A.S. and Yaglom, A.M., Statistical Fluid Mechanics, Vol. II. MIT Press, Cambridge, MA (1975).

    Google Scholar 

  36. Praskovsky, A.A., Gledzer, E.B., Karyakin, M.Y. and Zhou, Y., The sweeping decorrelation hypothesis and energy-inertial scale interaction in high Reynolds number flows. J. Fluid Mech. 248 (1993) 493-511.

    Google Scholar 

  37. Sreenivasan, K.R. and Stolovitzky, G., Statistical dependence of inertial range properties on large scales in a high-Reynolds-number shear flow. Phys. Rev. Lett. 77 (1996) 2218-2221.

    Google Scholar 

  38. Kurien, S. and Sreenivasan, K.R., Measures of anisotropy and the universal properties of turbu-lence. In: New Trends in Turbulence,NATO Advanced Study Institute, Les Houches, Springer and EDP-Sciences, (2001) pp. 53-111.

  39. Obukhov, A.M., Some specific features of atmospheric turbulence. J. Fluid Mech. 13 (1962) 77-81.

    Google Scholar 

  40. Cramér, H., Sur un nouveau théorème-limite de la théorie des probabilités, Actualités Scien-tifiques et Industrielles 736 (1938) 5-23.

    Google Scholar 

  41. Varadhan, S.R.S., Large Deviations and Applications. SIAM, Philadelphia (1984).

  42. Evertsz, C.J.G. and Mandelbrot, B.B., Multifractal measures. Appendix B. In: H. Pietgen (ed.), Chaos and Fractals (1993) pp. 921-953.

  43. Halsey, T.C., Jensen, M.H., Kadanoff, L.P., Procaccia, I. and Shraiman, B.I., Fractal measures and their singularities: The characterization of strage sets. Phys. Rev. A 33 (1986) 1141-1151.

    Google Scholar 

  44. Sreenivasan, K.R., Fractals and multifractals in fluid turbulence. Ann. Rev. Fluid Mech. 23 (1991) 539-600.

    Google Scholar 

  45. Kraichnan, R.H. Anomalous scaling of a randomly advected passive scalar. Phys. Rev. Lett. 72 (1994) 1016-1019.

    Google Scholar 

  46. Falkovich, G., Gawedzki, K. and Vergassola, M., Particles and fields in fluid turbulence. Rev. Mod. Phy. 73 (2001) 913-975.

    Google Scholar 

  47. Sreenivasan, K.R. and Stolovitzky, G., Turbulent cascades. J. Stat. Phy. 78 (1995) 311-331.

    Google Scholar 

  48. Yeung, P.K., Xu, S., Donzis, D.A. and Sreenivasan, K.R., Simulations of three-dimensional turbulent mixing for Schmidt numbers of the order 1000. Turbulence, Flow Combus. 72 (2004) 333-347.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sreenivasan, K. Possible Effects of Small-Scale Intermittency in Turbulent Reacting Flows. Flow, Turbulence and Combustion 72, 115–131 (2004). https://doi.org/10.1023/B:APPL.0000044408.46141.26

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:APPL.0000044408.46141.26

Navigation