Skip to main content
Log in

A Turbulence Model Sensitivity Study for CH4/H2 Bluff-Body Stabilized Flames

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

The objective of this work is to assess the performances of different turbulence models in predicting turbulent diffusion flames in conjunction with the flamelet model.The k–ε model, the Explicit Algebraic Stress Model (EASM) and the k–ε model withvaried anisotropy parameter C μ (LEA k–ε model)are first applied to the inert turbulent flow over a backward-facing step, demonstrating the quality of the turbulence models. Following this, theyare used to simulate the CH4/H2 bluff-body flame studied by the University of Sydney/Sandia.The numerical results are compared to experimental values of the mixture fraction, velocity field, temperature and constituent mass fractions.The comparisons show that the overall result depends on the turbulence model used, and indicate that theEASM and the LEA k–ε models perform better than the k–ε model and mimic most of the significant flow features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abid, A., Rumsey, C. and Gatski, T., Prediction of nonequlibrium turbulent flows with explicit algebraic stress models. AIAA J. 33 (1995) 2026–2031.

    Google Scholar 

  2. Craft, T., Launder B.E. and Suga, K.A., A non-linear eddy-viscosity model including sensitivity to stress anisotropy. In: Proceedings of 10th Symposium on Turbulent Shear Flows. Pennsylvania State University (1995) Session 23, pp. 19–24.

  3. Driver, D.M. and Seemiller, H.J., Features of a reattaching turbulent shear layer in a divergent channel flow. AIAA J. 23 (1985) 163–171.

    Google Scholar 

  4. Gatski, T.B. and Speziale, C.G., On explicit algebraic stress models for complex turbulent flows. J. Fluid Mech. 254 (1993) 59–78.

    Google Scholar 

  5. Hallbäck, M., Johansson, A.V. and Burden, A.D., The basic of turbulence modelling. In: Hallbäck, M., Henningson, D.S., Johansson, A.V. and Alfredsson P.H., (eds.), Turbulence and Transition Modelling. Kluwer Academic Publishers, Dordrecht (1996) pp. 81–145.

    Google Scholar 

  6. Jischa, M., Konvektiver Impuls-, Wärme-und Stoffaustausch. Grundlagen der Ingenieurwis-senschaften, Vieweg, Braunschweig/Wiesbaden (1982).

  7. Jones, W.P. and Whitelaw, J.H., Calculation methods for reacting turbulent flows: A review.

  8. Kim, J.S. and Williams, F.A., Structures of flow and mixture-fraction fields for counterflow diffusion flames with small stoichiometric mixture fractions. SIAM J. Appl. Math. 53 (1993) 1551–1566.

    Google Scholar 

  9. Peters, N., Laminar diffusion flamelet models in non-premixed turbulent combustion. Prog. Energy Combust. Sci. 10 (1984) 319–339.

    Google Scholar 

  10. Peters, N., Turbulent Combustion. Cambridge University Press, Cambridge (2000).

    Google Scholar 

  11. Pitsch, H., Chen, M. and Peters, N., Unsteady flamelet modeling of turbulent hydrogen/air dif-fusion flames. In: 27th Symposium (International) on Combustion. The Combustion Institute, Pittsburgh (1998) pp. 1057–1064.

  12. Pitsch, H., Riesmeier, E. and Peters, N., Unsteady flamelet modelling of soot formation in turbulent diffusion flames. Combust. Sci. Tech. 158 (2000) 389–406.

    Google Scholar 

  13. Pope, S.B., A Monte Carlo method for the PDF equations of turbulent reactive flow. Combust. Sci. Tech. 25 (1981) 159–174.

    Google Scholar 

  14. Pope, S.B., PDF Methods for turbulent reactive flows. Prog. Energy Combust. Sci. 11 (1985) 119–192.

    Google Scholar 

  15. Rhie, C.M. and Chow, W.L., Numerical study of the turbulent flow past an airfoil with trailing edge separation. AIAA J. 21 (1983) 1325–1332.

    Google Scholar 

  16. Rodi, W., A new algebraic relation for calculating the Reynolds stresses. Z. Angew. Math. Mech. 56 (1976) 219–221.

    Google Scholar 

  17. Rung, T., Thiele, F. and Fu, S. On the realisability of non-linear stress-strain relationships for Reynolds-stress closures. Flow, Turbulence Combust. 60 (1999) 333–359.

    Google Scholar 

  18. Speziale, C.G., Sarkar, S. and Gatski, T.B., Modelling the pressure–strain correlation of turbulence:an invariant dynamical systems approach. J. Fluid Mech. 227 (1991) 245–272.

    Google Scholar 

  19. Sutherland, D.M., The viscosity of gases and molecular forces. Philos. Mag. Ser. 36(5) (1893) 507–530.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, J., Thiele, F. & Buffat, M. A Turbulence Model Sensitivity Study for CH4/H2 Bluff-Body Stabilized Flames. Flow, Turbulence and Combustion 73, 1–24 (2004). https://doi.org/10.1023/B:APPL.0000044318.99203.bd

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:APPL.0000044318.99203.bd

Navigation