Skip to main content
Log in

Particle Simulation of Swirling Flows

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

The vortex particle method has been applied to the axisymmetric swirling flow of a viscous fluid. The formulation used yields two transport equations which have been solved within the lagrangian framework of particle method. The diffusion operator for both equations has been approximated by means of a Particle Strength Exchange scheme. Applications to the cases of one isolated vortex ring and two co-rotating vortex rings illustrate the interest of this new method. Special attention has been devoted to the vorticity production resulting from the interaction between the azimuthal components of vorticity and velocity. The generation of small eddies at the boundary of the vortex ring cross-section has been particularly investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acton, E., A modeling of large eddies in an axisymmetric jet. J.Fluid Mech. 98 (1980) 1.

    Article  MATH  ADS  Google Scholar 

  2. Beaudoin, A., Huberson, S. and Rivoalen, E., Simulation of anisotropic diffusion by means of a diffusion velocity method. J.Comput.Phys. 186 (2003) 122–135.

    Article  MATH  ADS  Google Scholar 

  3. Cottet, G.H. and Koumoutsakos, P., Vortex Methods – Theory and Practice. Cambridge University Press (2000) p. 313.

  4. Chorin A.J., Numerical study of slightly viscous flow, J.Fluid Mech. 57 (1973) 785.

    Article  MathSciNet  ADS  Google Scholar 

  5. Giovannini, A. and Gagnon, Y., Vortex simulation of axisymetrical flows in cylindrical coordinates, Part 1: Numerical algorithm. Internat.J.Thermal Fluid Sci. 4 (1996) 213–220.

    ADS  Google Scholar 

  6. Hill, M., On a spherical vortex. Philos.Trans.Roy.Soc.London A 185 (1894) 219–223.

    Article  ADS  Google Scholar 

  7. Huberson, S. and Jolles, A., Correction de l'erreur de projection dans les méthodes particules/ maillage. Rech.Aérosp. 4 (1990) 1–6.

    MATH  MathSciNet  Google Scholar 

  8. Lifschitz, A., Suters, W.H. and Beale, J.T., The onset of instability in exact vortex ring with swirl. J.Comput.Phys. 129 (1996) 8–29.

    Article  MATH  ADS  Google Scholar 

  9. Marshall, J.S., The flow induced by periodic vortex rings wrapped around a columnar vortex core. J.Fluid Mech. 345 (1997) 1–30.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  10. Marshall, J.S. and Krishnamoorthy, S., On the instantaneous cutting of a columnar vortex with non-zero axial flow. J.Fluid Mech. 351 (1997) 41–74.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. Martins, L.F. and Ghoniem, A., Simulation of the nonreacting flow in bluff-body burner; Effect of the diameter ratio. J.Fluids Engrg. 115 (1993) 413.

    Google Scholar 

  12. Melander, M.V. and Hussain, F., Topological vortex dynamics in axisymmetric vortex flows. J. Fluid Mech. 260 (1994) 57–80.

    Article  MathSciNet  ADS  Google Scholar 

  13. Nitsche, M., Axisymmetric vortex sheet roll-up. Ph.D. Thesis, University of Michigan (1992).

  14. Nitsche, M. and Krasny, R., A numerical study of vortex ring formation at the edge of circular tube. J.Fluid Mech. 276 (1994) 139–161.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  15. Moffatt, K., Generalized vortex rings with and without swirl. Fluid Dynam.Res. 3 (1988 22–30.

    Article  Google Scholar 

  16. Norbury J., A family of steady vortex ring. J.Fluid Mech. 57 (1973) 417–431.

    Article  MATH  ADS  Google Scholar 

  17. Pozrikidis, C., The nonlinear instability of Hill's vortex. J.Fluid Mech. 168 (1986) 337–367.

    Article  MATH  ADS  Google Scholar 

  18. Rivoalen, E. and Huberson, S., Numerical simulation of axisymmetric viscous flows by means of a particle method. J.Comput.Phys. 52 (1999) 1–31.

    Article  MathSciNet  ADS  Google Scholar 

  19. Rivoalen, E. and Huberson, S., The particle strength exchange method applied to axisymmetric viscous flows. J.Comput.Phys. 168 (2001) 519–526.

    Article  MATH  ADS  Google Scholar 

  20. Saffman, P.G., Vortex Dynamics. Cambridge University Press (1992) p. 311.

  21. Shariff, K. and Leonard, A., Vortex ring. Annual Rev.Fluid Mech. 24 (1992) 235–279.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  22. Tung, C. and Ting, L., Motion and decay of a vortex ring, Phys.Fluids 10 (1967) 901.

    Article  ADS  Google Scholar 

  23. Turkington, B., Vortex rings with swirl: Axisymmetric solutions of the Euler equations with non-zero helicity. SIAM J.Math.Anal. 20 (1989) 57–73.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  24. Stanaway, S.K., Cantwell, B.J. and Spalart, P.R., Navier–Stokes simulations of axisymmetric vortex rings AIAA J. 318 (1988) 1–14.

    Google Scholar 

  25. Verzicco, R., Iafrati, A., Riccardo, G. and Fatica, M., Analysis of the sound generated by the pairing of two axisymmetric co-rotating vortex rings. J.Sound Vibration 200 (1997) 347–358.

    Article  ADS  Google Scholar 

  26. Virk, D., Melander, M.V. and Hussain, F., Dynamics of a polarized vortex ring, J.Fluid Mech. 260 (1994) 23–55.

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rivoalen, E., Huberson, S. & Bratec, H. Particle Simulation of Swirling Flows. Flow, Turbulence and Combustion 72, 69–90 (2004). https://doi.org/10.1023/B:APPL.0000014986.94393.e9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:APPL.0000014986.94393.e9

Navigation