Skip to main content
Log in

Noise Reduction in Non-Premixed Lifted-Jet Flames

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

The characteristic changes in non-premixed lifted flames when excited by hole tones from a cavity, placed in the flow path of the fuel gas, were studied. A significant reduction of the sound pressure level was observed in the low-frequency noise at the flame base of the lifted flame when the hole tones were induced in the jet. The liftoff height and the mean diameter of the flame base decreased for a given jet Reynolds number. The blow-off velocities also increased suggesting improved flame stability in the presence of the hole tones induced by the cavity. Incorporation of the cavity upstream of a burner nozzle is demonstrated to give a quieter lifted flame with improved stability characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Briffa, F.E.J. and Romaine, D.R., Effect of acoustic fields on flames. Combust.Sci.Technol. 7 (1973) 93–98.

    Google Scholar 

  2. Bussman, W. and Jayakaran, J.D., Noise. In: Baukal Jr., C.E. (ed.), Combustion Handbook, Industrial Combustion Series. CRC Press, New York (2001) pp. 223–249.

    Google Scholar 

  3. Chao, Y., Wu, C., Yuan, T. and Cheng, T., Stabilization process of a lifted flame tuned by acoustic excitation. Combust.Sci.Technol. 174 (2002) 87–110.

    Google Scholar 

  4. Chao, Y. and Jeng, M., Behaviour of the lifted flame under acoustic excitation. In: 24th Symposium (International) on Combustion. The Combustion Institute, Pittsburg (1992) pp. 333-340.

    Google Scholar 

  5. Cerza, M. and Boughey, B., The effect of air infiltration on a large heat pipe at horizontal and vertical orientations. J.Heat Transfer 125 (2003) 349–355.

    Article  Google Scholar 

  6. Clavin, P. and Siggia, E.D., Turbulent premixed flames and sound generation. Combust.Sci. Technol. 78 (1991) 147–155.

    Google Scholar 

  7. Crow, S.C. and Champagne, F.H., Orderly structure in jet turbulence. J.Fluid Mech. 48 (1971) 431–458.

    Article  Google Scholar 

  8. Delabroy, O., Lacas, F., Poinsot, T., Candel, S., Hoffman, T., Hermann, J., Gleis, S. and Vortmeyer, D., A study of NOX reduction by acoustic excitation in a liquid fuelled burner. Combust. Sci.Technol. 119 (1996) 397–408.

    Google Scholar 

  9. Everest, D.A., Driscoll, J.F., Dahm,W.J.A. and Feikema, D.A., Images of two dimensional field and temperature gradients to quantify mixing rates within a non-premixed turbulent jet flame. Combust.Flame 101 (1995) 58–68.

    Article  Google Scholar 

  10. Everest, D.A., Feikema, D.A. and Deriscoll, J.F., Images of strained flammable layer used to study the liftoff of turbulent jet flames. In: 26th Symposium (International) on Combustion. The Combustion Institute, Pittsburg, PA (1996) pp. 129–136.

    Google Scholar 

  11. Furi, M., Papas, P., Rais, R.M. and Monkewitz, P.A., The effect of flame position on the Kelvin–Helmholtz instability in non-premixed jet flames. In: 29th Symposium (International) on Combustion. The Combustion Institute, Pittsburg, PA (2002) to appear.

    Google Scholar 

  12. Gutmark, E., Parr, T.P., Hanson-Parr, D.M. and Schadow, K.C., Stabilization of a premixed flame by shear flow excitation. Combust.Sci.Technol. 73 (1990) 521–535.

    Google Scholar 

  13. Hardalupas, Y. and Selbach, A., Imposed oscillations and non premixed flames. Prog.Energy Combust.Sci. 28 (2002), 75–104.

    Article  Google Scholar 

  14. Howe, M.S., Acoustics of Fluid Structure Interactions. Cambridge University Press, London (1998).

    MATH  Google Scholar 

  15. Huerre, P. and Monkewitz, P.A., Local and global instabilities in spatially developing flows. Ann.Rev.Fluid Mech. 22 (1990) 473–537.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  16. Hussain, A.K.M.F. and Hassan, M.A.Z., The ‘whistler’ nozzle phenomenon. J.Fluid Mech. 134 (1983) 431–438.

    Article  ADS  Google Scholar 

  17. Kioni, P.N., Rogg, B., Bray, K.N. and Linan, A., Flame spread in laminar mixing layers: The triple flame. Combust.Flame 95 (1993) 276–290.

    Article  Google Scholar 

  18. Kinsle, L.E., Frey, A.R., Copens, A.B. and Sanders, J.V., Fundamentals of Acoustics, John Wiley & Sons, New York (1982).

    Google Scholar 

  19. Liepman, D. and Gharib, M., The role of streamwise vorticity in the near field entrainment. J. Fluid Mech. 245 (1992) 643–688.

    Article  ADS  Google Scholar 

  20. Monkewitz, P.A., Beebert, D.W., Bariskow, B. and Lehman, B., Self-excited oscillation and mixing in a heated round jet. J.Fluid Mech. 213 (1990) 611–639.

    Article  ADS  Google Scholar 

  21. Pitts,W.M., Assessment of theories for the behaviour and blowout of lifted turbulent jet flames. In: 22nd Symposium (International) on Combustion. The Combustion Institute, Pittsburg, PA (1988) pp. 809–816.

    Google Scholar 

  22. Narayanan, S., Barber, T.J. and Polak, D.R., High subsonic jet experiments: Turbulence and noise generation studies. AIAA J. 40 (2002) 430–437.

    ADS  Google Scholar 

  23. Poppe, C., Sivasesgaram, S., Whitelaw, J.H., Control of NOx emission in confined flames by oscillations. Combust.Flame 113 (1998) 13–26.

    Article  Google Scholar 

  24. Putnam, A.A., Combustion noise in industrial burners. Noise Control Engineering 7 (1976) 24–34.

    Google Scholar 

  25. Rajaram, R. and Lieuwen, T., Parametric studies of acoustic radiation from premixed flames. In: 38th AIAA/AME/SAE/ASEE Joint Propulsion Conference, Indiana (2002) AIAA-2002-3864.

  26. Ramamurthi, K. and Padma, J.C.J., Computations of forced convection heat transfer in the entrance region of pipes. In: 30th AIAA Thermophysics Conference, San Diego (1995) AIAA-95-2047.

  27. Raman, G., Enoia, E. and Bencic, T.J., Jet cavity interaction tones. AIAA J. 40 (2002) 1503–1511.

    ADS  Google Scholar 

  28. Savas, O. and Gollahalli, S.R., Flow structure in near-nozzle region of gas jet flames. AIAA J. 24 (1986) 1137–1140.

    Article  ADS  Google Scholar 

  29. Schuller, T., Durox and Candell, S., Dynamics of and noise radiated by a perturbed impinging premixed jet flame. Combust.Flame 128 (2002) 88–110.

    Article  Google Scholar 

  30. Singh, K.K., Frankel, S.H. and Gore, J.P., Effect of combustion on sound pressure generated by circular jet flame. AIAA J. 41 (2003) 319–321.

    ADS  Google Scholar 

  31. Sreenivasan, K.R., Raghu, S. and Kyle, D., Absolute instability of variable density round jets. Exp.Fluids 7 (1989) 309–317.

    Article  Google Scholar 

  32. Tam, C.K.W. and Block, P.J.W., On the tones and pressure oscillations induced by flow over rectangular cavities. J.Fluid Mech. 89 (1978) 373–399.

    Article  MathSciNet  ADS  Google Scholar 

  33. Turns, S.R., An Introduction to Combustion-Concepts and Applications. McGraw-Hill, New York (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramamurthi, K., Patnaik, R. Noise Reduction in Non-Premixed Lifted-Jet Flames. Flow, Turbulence and Combustion 72, 49–67 (2004). https://doi.org/10.1023/B:APPL.0000014913.33474.b9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:APPL.0000014913.33474.b9

Navigation