Skip to main content
Log in

Leading-Edge Reaction Zones in Lifted-Jet Gas and Spray Flames

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

An investigation of the leading edge characteristics in lifted turbulent methane-air (gaseous) and ethanol-air (spray) diffusion flames is presented. Both combustion systems consist of a central nonpremixed fuel jet surrounded by low-speed air co-flow. Non-intrusive laser-based diagnostic techniques have been applied to each system to provide information regarding the behavior of the combustion structures and turbulent flow field in the regions of flame stabilization. Simultaneous sequential CH-PLIF/particle image velocimetry and CH-PLIF/Rayleigh scattering measurements are presented for the lifted gaseous flame. The CH-PLIF data for the lifted gas flame reveals the role that ``leading-edge'' combustion plays as the stabilization mechanism in gaseous diffusion flames. This phenomenon, characterized by a fuel-lean premixed flame branch protruding radially outward at the flame base, permits partially premixed flame propagation against the incoming flow field. In contrast, the leading edge of the ethanol spray flame, examined using single-shot OH-PLIF imaging and smoke-based flow visualization, does not exhibit the same variety of leading-edge combustion structure, but instead develops a dual reaction zone structure as the liftoff height increases. This dual structure is a result of the partial evaporation (hence partial premixing) of the polydisperse spray and the enhanced rate of air entrainment with increased liftoff height (due to co-flow). The flame stabilizes in a region of the spray, near the edge, occupied by small fuel droplets and characterized by intense mixing due to the presence of turbulent structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allen, M.G., McManus, K.R., Sonnenfroh, D.M. and Paul, P.H., Planar laser-induced-fluorescence imaging measurements of OH and hydrocarbon fuel fragments in high-pressure spray-flame combustion. Appl.Optics 34 (1995) 6287–6300.

    ADS  Google Scholar 

  2. Carter, C.D., Donbar, J.M. and Driscoll, J.F., Simultaneous CH planar laser-induced fluorescence and particle imaging velocimetry in turbulent nonpremixed flames. Appl.Phys.B 66 (1998) 129–132.

    Article  ADS  Google Scholar 

  3. Cessou, A. and Stepowski, D., Planar laser induced fluorescence measurement of [OH] in the stabilization stage of a spray jet flame. Combust.Sci.Technol. 118 (1996) 361–381.

    Google Scholar 

  4. Cessou, A., Goix, P. and Stepowski, D., Simple description of the combustion structures in the stabilization stage of a spray jet flame. Atomization Sprays 9 (1999) 1–27.

    Google Scholar 

  5. Chung, S.H. and Lee, B.J., On the characteristics of laminar lifted flames in a nonpremixed jet. Combust.Flame 86 (1991) 62–72.

    Article  Google Scholar 

  6. Continillo, G. and Sirignano, W.A., Counterflow spray combustion modeling. Combust.Flame 81 (1990) 325–340.

    Article  Google Scholar 

  7. Dieke, G.H. and Crosswhite, H.M., The ultraviolet bands of OH. J.Quant.Spectrosc.Radiat. Transfer 2 (1962) 97–199.

    Article  ADS  Google Scholar 

  8. Donbar, J.M., Driscoll, J.F. and Carter, C.D., Reaction zone structure in turbulent nonpremixed jet flames-from CH-OH PLIF images. Combust.Flame 122 (2000) 1–19.

    Article  Google Scholar 

  9. Donbar, J.M., Driscoll, J.F. and Carter, C.D., Strain rates measured along the wrinkled flame contour within turbulent non-premixed jet flames. Combust.Flame 125 (2001) 1239–1257.

    Article  Google Scholar 

  10. Drallmeier, J.A. and Peters, J.E., Liquid-and vapor-phase dynamics of a solid-cone pressure swirl atomizer. Atomization Sprays 4 (1994) 135–158.

    Google Scholar 

  11. Friedman, J.A. and Renksizbulut, M., Investigating a methanol spray flame interacting with an annular air jet using phase-doppler interferometry and planar laser-induced fluorescence. Combust.Flame 117 (1999) 661–684.

    Article  Google Scholar 

  12. Greenberg, J.B. and Sarig, N., An analysis of multiple flames in counterflow spray combustion. Combust.Flame 104 (1996) 431–459.

    Article  Google Scholar 

  13. Greenberg, J.B. and Sarig, N., Sensitivity of the mode of combustion of partially premixed spray flames to flow, transport, and evaporation effects. Atomization Sprays 7 (1997) 143–159.

    Google Scholar 

  14. Herpfer, D.C. and Jeng, S., Planar measurements of droplet velocities and sizes within a simplex atomizer. AIAA J. 35 (1997) 127–132.

    Google Scholar 

  15. Kelman, J.B. and Masri, A.R., Simultaneous imaging of temperature and OH number density in turbulent diffusion flames. Combust.Sci.Technol. 122 (1997) 1–32.

    Google Scholar 

  16. Kelman, J.B., Eltobaji, A.J. and Masri, A.R., Laser imaging in the stabilisation region of turbulent lifted flames. Combust.Sci.Technol. 135 (1998) 117–134.

    Google Scholar 

  17. Kioni, P.N., Rogg, B., Bray, K.N.C. and Liñán, A., Flame spread in laminar mixing layers: The triple flame. Combust.Flame 98 (1993) 276–290.

    Article  Google Scholar 

  18. Lazaro, B.J. and Lasheras, J.C., Droplet dispersion and transport mechanisms in a turbulent, free shear-layer. In:Twenty-Second International Symposium on Combustion. The Combustion Institute, Pittsburgh, PA (1988) pp. 1991–1998.

    Google Scholar 

  19. Le Gal, P., Farrugia, N. and Greenhalgh, D.A., Laser sheet dropsizing of dense sprays. Optics and Laser Technology 31 (1999) 75–83.

    Article  ADS  Google Scholar 

  20. Lee, B.J. and Chung, S.H., Stabilization of lifted tribrachial flames in a laminar nonpremixed jet. Combust.Flame 109 (1997) 163–172.

    Article  Google Scholar 

  21. Liepmann, D. and Gharib, M., The role of streamwise vorticity in the near-field entrainment of round jets. J.Fluid Mech. 245 (1992) 643–668.

    Article  ADS  Google Scholar 

  22. Lyons, K.M. and Watson, K.A., Partially premixed combustion in lifted turbulent jets. Combust. Sci.Technol. 156 (2000) 97–105.

    Google Scholar 

  23. MacGregor, S.A., Air entrainment in spray jets. Internat.J.Heat Fluid Flow 12 (1991) 279–283.

    Article  ADS  Google Scholar 

  24. Marley, S.K., Welle, E.J. and Lyons, K.M., Combustion structures in lifted ethanol spray flames. ASME, J.Engrg.Gas Turbines Power (to appear).

  25. Muñiz, L. and Mungal, M.G., Instantaneous flame-stabilization velocities in lifted-jet diffusion flames. Combust.Flame 111 (1997) 16–31.

    Article  Google Scholar 

  26. Onuma, Y., Tsuji, T. and Ogasawara, M., Studies on the flame structure of a spray burner. Bull. JSME 17 (1974) 1296–1304.

    Google Scholar 

  27. Onuma, Y. and Ogasawara, M., Studies on the structure of a spray combustion flame. In: Fifteenth International Symposium on Combustion. The Combustion Institute, Pittsburgh, PA (1975) pp. 453–465.

    Google Scholar 

  28. Peters, N. and Williams, F.A., Liftoff characteristics of turbulent jet diffusion flames. AIAA J. 21 (1983) 423–429.

    Article  MATH  ADS  Google Scholar 

  29. Peters, N., Turbulent Combustion. Cambridge University Press, New York (2000).

    MATH  Google Scholar 

  30. Ruetsch, G.R., Vervisch, L. and Liñán, A., Effects of heat release on triple flames. Phys.Fluids 7 (1995) 1447–1454.

    Article  ADS  Google Scholar 

  31. Sankar, S.V., Maher, K.E., Robart, D.M. and Bachalo, W.D., Rapid characterization of fuel atomizers using an optical patternator. ASME, J.Engrg.Gas Turbines Power 121 (1999) 409–414.

    Google Scholar 

  32. Schefer, R.W., Three-dimensional structure of lifted, turbulent-jet flames. Combust.Sci. Technol. 125 (1997) 371–394.

    Google Scholar 

  33. Schefer, R.W., Flame sheet imaging using CH chemiluminescence. Combust.Sci.Technol. 126 (1997) 255–270.

    Google Scholar 

  34. Tanoff, M.A., Smooke, M.D., Osborne, R.J., Brown, T.M. and Pitz, R.W., The sensitive structure of partially premixed methane-air vs. Air counterflow flames. In: Twenty-Sixth International Symposium on Combustion. The Combustion Institute, Pittsburgh, PA (1996) pp. 1121–1128.

    Google Scholar 

  35. Vanquickenborne, L. and Van Tiggelen, A., The stabilization mechanism of lifted diffusion flames. Combust.Flame 10 (1966) 59–69.

    Article  Google Scholar 

  36. Veynante, D., Vervisch, L., Poinsot, T., Liñán, A. and Ruetsch, G.R., Triple flame structure and diffusion flame stabilization. In: Proceedings of the Summer Program. Center for Turbulence Research, NASA Ames/Stanford University (1994) pp. 55–73.

  37. Watson, K.A., Lyons, K.M., Donbar, J.M. and Carter, C.D., Observations on the leading edge in lifted flame stabilization. Combust.Flame 119 (1999) 199–202.

    Article  Google Scholar 

  38. Watson, K.A., Lyons, K.M., Donbar, J.M. and Carter, C.D., Scalar and velocity field measurements in a lifted CH4-Air diffusion flame. Combust.Flame 117 (1999) 257–271.

    Article  Google Scholar 

  39. Watson, K.A., Lyons, K.M., Donbar, J.M. and Carter, C.D., Simultaneous Rayleigh imaging and CH-PLIF measurements in a lifted jet diffusion flame. Combust.Flame 123 (2000) 252–265.

    Article  Google Scholar 

  40. Watson, K.A., Lyons, K.M., Carter, C.D. and Donbar, J.M., Simultaneous two-shot CH planar laser-induced fluorescence and particle image velocimetry measurements in lifted CH4/Air diffusion flames. In: Twenty-Ninth International Symposium on Combustion. The Combustion Institute, Pittsburgh, PA (2002) pp. 1905–1912.

    Google Scholar 

  41. Watson, K.A., Lyons, K.M., Donbar, J.M. and Carter, C.D., Evaluating the leading-edge and local extinction in lifted-jet diffusion flames (in preparation).

  42. Zhang, Z. and Ngendakumana, P., An experimental investigation on the fuel oil atomization by pressure atomizers. Bull.Soc.Chim.Belg. 101 (1992) 893–899.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marley, S., Lyons, K. & Watson, K. Leading-Edge Reaction Zones in Lifted-Jet Gas and Spray Flames. Flow, Turbulence and Combustion 72, 29–47 (2004). https://doi.org/10.1023/B:APPL.0000014906.91990.4e

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:APPL.0000014906.91990.4e

Navigation