Skip to main content
Log in

Latitudinal variation in habitat specificity of ameronothrid mites (Oribatida)

  • Published:
Experimental & Applied Acarology Aims and scope Submit manuscript

Abstract

Ameronothroid mites, including Ameronothridae, Fortuyniidae and Selenoribatidae, are unique among the Oribatida through having a global distribution from the tropics to the poles, and occupying a diversity of habitats including terrestrial, marine and freshwater. Their ecological diversification is of considerable interest from both the perspective of evolution over geological timescales, and the detail of the underlying processes. Given their widespread global distribution, it seems likely that historical global events (tectonic and climatic) have played a fundamental role in their ecological diversification. Previous studies of sub-Antarctic island arthropods have generated considerable circumstantial evidence in support of glaciation being a primary factor influencing ecological patterns: lower habitat specificity and weaker interspecific interactions are associated with more recent (postglacial) vegetated terrestrial biotopes, as compared to the older epilithic and littoral biotopes (which are assumed to have been present, albeit reduced in extent, during Neogene glacial maxima). Here, we use ameronothrid mites as a case study to examine the extent to which the above island scenario generalizes globally across latitudes affected by glaciation. We show that, unlike congeners or even conspecifics at lower latitudes in each hemisphere which are restricted to marine environments, the species found at higher latitudes (especially Alaskozetes antarcticus, Ameronothrus dubinini, Ameronothrus lineatus, and Halozetes belgicae) show greater affinity for terrestrial environments. They show a transition or expansion of habitat use (from marine-influenced to terrestrial habitats) implicit with a lower degree of habitat specificity, in relation to increasing latitude. We contend that the terrestrial environment at higher latitudes in both hemispheres has been colonized by these ameronothrid mite species following the various glaciation events, facilitated by a lack of competition experienced in their low diversity communities, in a manner which represents a larger scale demonstration of the processes described on sub-Antarctic islands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barendse J., Mercer R. D., Marshall D. J. and Chown S. L. 2002. Habitat specificity of mites on Marion Island. Environ. Entomol. 31:612–625.

    Google Scholar 

  • Behan-Pelletier V. M. 1997. The semiaquatic genus Tegeocranellus (Acari:Oribatida:Ameronothroidea)of North and Central America. Can. Entomol. 129:537–577.

    Article  Google Scholar 

  • Block W. and Convey P. 1995. The biology,life cycle and ecophysiology of the Antarctic mite Alaskozetes antarcticus (Michael). J. Zool. 236:431–449.

    Article  Google Scholar 

  • Block W. and Starý J. 1996. Oribatid mites (Acari:Oribatida)of the maritime Antarctic and Antarctic Peninsula. J. Nat. Hist. 30:1059–1067.

    Google Scholar 

  • Burn A. J. and Lister A. 1988. Activity patterns in an Antarctic arthropod community. Br. Antarct. Surv. Bull. 78:43–48.

    Google Scholar 

  • Chown S. L. 1990. Possible e. ects of Quaternary climate change on the composition of insect communities of the South Indian Ocean Province Islands. S. Afr. J. Sci. 86:386–391.

    Google Scholar 

  • Chown S. L. 1994. Historical ecology of sub-Antarctic weevils:patterns and processes on isolated islands. J. Nat. Hist. 28:411–433.

    Google Scholar 

  • Chown S. L. and Clarke A. 2000. Stress and the geographic distribution of marine and terrestrial animals. In:Storey K. B. and Storey J. (eds),Cell and Molecular Responses to Stress. Elsevier, Amsterdam,pp. 41–54.

    Google Scholar 

  • Chown S. L., McGeoch M. and Marshall D. J. 2002. Diversity and conservation of invertebrates at the Prince Edward Islands. Afr. Entomol. 10:67–82.

    Google Scholar 

  • Coetzee L. and Marshall D. J. 2003. A new Halozetes species (Acari,Oribatida,Ameronothroidae) from the marine littoral of southern Africa. Afr. Zool. 38:327–331.

    Google Scholar 

  • Convey P. 1996a. The influence of environmental characteristics on the life history attributes of Antarctic terrestrial biota. Biol. Rev. 71:191–225.

    Google Scholar 

  • Convey P. 1996b. Overwintering strategies of terrestrial invertebrates from Antarctica-the significance of. exibility in extremely seasonal environments. Eur. J. Entomol. 93:489–505.

    Google Scholar 

  • Convey P. 2001. Antarctic Ecosystems. In:Levin S. A. (ed. ),Encyclopedia of Biodiversity,Vol. 1. Academic Press, San Diego,pp. 171–184.

    Google Scholar 

  • Convey P. 2003. Maritime Antarctic climate change:signals from terrestrial biology. In:Domack P., Burnett A., Leventer A., Convey P., Kirby M. and Bindschadler R. (eds),Antarctic Peninsula Climate Variability:A Historical and Palaeoenvironmental Perspective,Antarctic Research Series,Vol. 79. American Geophysical Union,pp. 145–158.

  • Convey P., Greenslade P. and Pugh P. J. A. 2000a. Terrestrial fauna of the South Sandwich Islands. J. Nat. Hist. 34:597–609.

    Article  Google Scholar 

  • Convey P. and Quintana R. D. 1997. The terrestrial arthropod fauna of Cierva Point SSSI,Danco Coast,northern Antarctic Peninsula. Eur. J. Soil Biol. 33:19–29.

    Google Scholar 

  • Convey P. and Smith R. I. L. 1997. The terrestrial arthropod fauna and its habitats in northern Marguerite Bay and Alexander Island,maritime Antarctic. Antarct. Sci. 9:12–26.

    Google Scholar 

  • Convey P., Smith R. I. L., Peat H. J. and Pugh P. J. A. 2000b. The terrestrial biota of Charcot Island, eastern Bellingshausen Sea,Antarctica an example of extreme isolation. Antarct. Sci. 12:406–413.

    Google Scholar 

  • Crame J. A. 1992. Evolutionary history in the polar regions. Hist. Biol. 6:37–60.

    Article  Google Scholar 

  • Crame J. A. 1993. Latitudinal range. uctuations in the marine realm through geological time. Trends Ecol. Evol. 8:162–166.

    Article  Google Scholar 

  • Engelbrecht C. M. 1975. New ameronothroid (Oribatei,Acari)taxa from the Republic of South Africa and the islands of Gough and Marion. Navors. Nas. Mus. Bloemfontein. 3:53–85.

    Google Scholar 

  • Gabriel A. G. A., Chown S. L., Barendse J., Marshall D. J., Mercer R. D., Pugh P. J. A. and Smith V. R. 2001. Biological invasions of Southern Ocean islands:the Collembola of Marion Island as a test of generalities. Ecography 24:421–430.

    Article  Google Scholar 

  • Goddard D. G. 1979. The Signy Island terrestrial reference sites:XI. Population studies on the Acari. Br. Antarct. Surv. Bull. 48:71–92.

    Google Scholar 

  • Goddard D. G. 1982. Feeding biology of free-living Acari at Signy Island,South Orkney Islands. Br. Antarct. Surv. Bull. 51:290–293.

    Google Scholar 

  • Hammer M. and Wallwork J. A. 1979. A review of the world distribution of oribatid mites (Acari: Cryptostigmata)in relation to continental drift. Biol. Skr. Dan. Vid. Selsk. 22:1–31.

    Google Scholar 

  • Hodgson D. A. and Convey P. A 7000 year record of the oribatid mite communities on a maritime-Antarctic island:responses to climate change. Arct. Antarct. Alp. Res., (in press).

  • Jones V. J., Hodgson D. A. and Chepstow-Lusty A. 2000. Palaeolimnological evidence for marked Holocene environmental changes on Signy Island,Antarctica. Holocene 10:43–60.

    Article  Google Scholar 

  • Larter R. D. and Vanneste L. E. 1995. Relict subglacial deltas on the Antarctic Peninsula outer shelf. Geology 23:33–36.

    Article  Google Scholar 

  • Luxton M. 1990. The marine littoral mites of the New Zealand region. J. R. Soc. New Zeal. 20: 367–418.

    Google Scholar 

  • Marshall D. J. and Chown S. L. 2002. The acarine fauna of Heard Island. Polar Biol. 25:688–695.

    Google Scholar 

  • Marshall D. J. and Coetzee L. 2000. Historical biogeography and ecology of the continental Antarctic mite genus,Maudheimia (Acari;Oribatida):evidence for a Gondwanan origin and Pliocene-Pleistocene speciation. Zool. J. Linn. Soc. 129:111–128.

    Article  Google Scholar 

  • Marshall D. J., Gremmen N. J. M., Coetzee L., OConnor B. M., Pugh P. J. A., Theron P. D. and Ueckermann E. A. 1999. New records of Acari from the sub-Antarctic Prince Edward Islands. Polar Biol. 21:84–89.

    Article  Google Scholar 

  • Marshall D. J., OConnor B. M. and Pugh P. J. A. 2003. Algophagus mites (Astigmata:Algophagidae) from the sub-antarctic Prince Edward Islands:habitat-related morphology and taxonomic descriptions. J. Zool. 259:31–47.

    Article  Google Scholar 

  • Mercer R. D., Chown S. L. and Marshall D. J. 2000. Mite and insect zonation on a Marion Island rocky shore:a quantitative approach. Polar Biol. 23:766–774.

    Article  Google Scholar 

  • Norton R. A. 1994. Evolutionary aspects of oribatid mite life histories and consequences for the origin of the Astigmata. In:Houck M. A. (ed. ),Mites,Ecological and Evolutionary Analyses of Life-history Patterns. Chapman & Hall, London,pp. 99–135.

    Google Scholar 

  • Norton R. A., Graham T. B. and Alberti G. 1997. A rotifer-eating ameronothroid (Acari: Ameronothroidae)mite from ephemeral pools on the Colorado Plateau. In:Mitchell R., Horn D. J., Needham G. R. and Welbourn W. C. (eds),Acarology IX,Proceedings (IXth International Congress of Acarology). Ohio. Biol. Survey,Columbus,pp. 539–542.

  • Procheś Ś. 2001. Back to the sea:secondary marine organisms from a biogeographical perspective. Biol. J. Linn. Soc. 74:197–203.

    Article  Google Scholar 

  • Procheś ś. and Marshall D. J. 2001. Global distribution patterns of non-halacarid marine intertidal mites:implications for their origins in marine habitats. J. Biogeogr. 28:47–58.

    Article  Google Scholar 

  • Procheś Ś. and Marshall D. J. 2002. Diversity and biogeography of southern African intertidal Acari. J. Biogeogr. 29:1201–1216.

    Article  Google Scholar 

  • Pugh P. J. A. 1993. A synonymic catalogue of the Acari from Antarctica,the sub-Antarctic Islands and the Southern Ocean. J. Nat. Hist. 27:323–421.

    Google Scholar 

  • Pugh P. J. A. and Convey P. 2000. Scotia Arc Acari:antiquity and origin. Zool. J. Linn. Soc. 130: 309–328.

    Article  Google Scholar 

  • Pugh P. J. A. and King P. E. 1985. The vertical distribution of the British intertidal Acari-the non halacarid fauna (Arachnida:Acari). J. Zool 207:21–33.

    Article  Google Scholar 

  • Pugh P. J. A. and MacAllister H. E. 1994. Acari of the supralittoral zone on sub-Antarctic South Georgia. Pedobiologia 38:552–565.

    Google Scholar 

  • Richard K. J., Convey P. and Block W. 1994. The terrestrial arthropod fauna of the Byers Peninsula,South Shetland Islands. Polar Biol. 14:371–379.

    Article  Google Scholar 

  • Rohde K. 1992. Latitudinal gradients in species-diversity-the search for the primary cause. Oikos 65:514–527.

    Google Scholar 

  • Schenker R. and Block W. 1986. Micro-arthropod activity in three contrasting terrestrial habitats on Signy Island,Maritime Antarctic. Br. Antarct. Surv. Bull. 71:31–43.

    Google Scholar 

  • Schulte G. 1975. Holoarktische Artareale der Ameronothridae (Acari,Oribatei). Verö Inst. Meeresforsch. Bremerh. 15:339–357.

    Google Scholar 

  • Schulte G. 1976. Zur Nahrungsbiologie der terrestrischen und marinen Milbenfamilie Ameronothridae (Acari,Oribatei). Pedobiologia 16:332–352.

    Google Scholar 

  • Schulte G., Schuster R. and Schubart H. 1975. Zur Verbreitung und ökologie der Ameronothriden (Acari,Oribatei)in terrestrischen,limnischen und marinen Lebensräumen. Verö Inst. Meeresforsch. Bremerh. 15:359–385.

    Google Scholar 

  • Schulte G. and Weigmann G. 1977. The evolution of the family Ameronothridae (Acari:Oribatei). II. Ecological aspects. Acarologia. 19:167–173.

    Google Scholar 

  • Schuster R. 1966. Hornmilben (Oribatei)als Bewohner des marinen Litorals. Verö Inst. Meeresforsch. Bremerh. Sonderband II:319–327.

    Google Scholar 

  • Søvik G. 2004. The biology and life history of arctic populations of the littoral mite Ameronothrus lineatus (Acari,Oribatida). Exp. Appl. Acarol. 34:3–20.

    Article  PubMed  Google Scholar 

  • Søvik G. and Leinaas H. P. 2002. Variation in extraction e. ciency between juveniles and adult oribatid mites:Ameronothrus lineatus (Oribatida,Acari)in a Macfadyen high-gradient canister extractor. Pediobiologia 46:34–41.

    Article  Google Scholar 

  • Søvik G. and Leinaas H. P. 2003. Long life cycle and high adult survival in an arctic population of the mite Ameronothrus lineatus (Acari,Oribatida)from Svalbard. Polar Biol. 26:500–508.

    Article  Google Scholar 

  • Søvik G., Leinaas H. P., Ims R. A. and Solhøy T. 2003. Population dynamics and life history of the oribatid mite Ameronothrus lineatus (Acari,Oribatida)on the high arctic archipelago of Svalbard. Pedobiologia 47:257–271.

    Article  Google Scholar 

  • Starý J. 1995. Oribatid mites (Acari:Oribatida)of Beauchêne Island,Falklands,South Atlantic. J. Nat. Hist. 29:1461–1467.

    Google Scholar 

  • Starý J. and Block W. 1995. Oribatid mites (Acari:Oribatida)of South Georgia,South Atlantic. J. Nat. Hist. 29:1469–1481.

    Google Scholar 

  • Starý J. and Block W. 1996. Oribatid mites (Acari:Oribatida)of the Falkland Islands,South Atlantic and their zoogeographical relationships. J. Nat. Hist. 30:523–535.

    Google Scholar 

  • Starý J. and Block W. 1998. Distribution and biogeography of oribatid mites (Acari:Oribatida)in Antarctica,the sub-Antarctic islands and nearby land areas. J. Nat. Hist. 32:861–894.

    Google Scholar 

  • Tilbrook P. J. 1973 Terrestrial arthropod ecology at Signy Island,South Orkney Islands. PhD thesis,University of London.

  • Travé J. 1974. Observations preliminaries sur les oribates de l 'archipel de Kerguelen. In: Piffl E. (ed. ),Proceedings of the 4th International Congress of Acarology. Akademiai Kiado, Budapest, pp. 39–45.

    Google Scholar 

  • Travé J. 1976. Recherches sur les Micrarthropodes terrestres de l 'archipel des Kerguelen Données quantitatives-Analyse de deux groupes d 'Acariens Oribatida et Acaridida. Rev. Ecol. Biol. Sol. 13:55–67.

    Google Scholar 

  • Usher M. B. and Booth R. G. 1984. Arthropod communities in a Maritime Antarctic moss-turf habitat:three-dimensional distribution of mites and Collembola. J. Anim. Ecol. 53:427–441.

    Article  Google Scholar 

  • Wallwork J. A. 1963. The Oribatei (Acari)of Macquarie Island. Pac. Insects 5:721–769.

    Google Scholar 

  • Wallwork J. A. 1965. Some cryptostigmatid mites (Acari:Cryptostigmata)from Crozet Islands. Pac. Insects 14:27–37.

    Google Scholar 

  • Wallwork J. A. 1966. Some Cryptostigmata (Acari)from South Georgia. Br. Antarct. Surv. Bull. 9: 1–20.

    Google Scholar 

  • Wallwork J. A. 1967. Cryptostigmata (Oribatid mites). In:Gressitt J. L. (eds),Entomology of Antarctica (Antarctic Research Series 10). In:Gressit J. L. (ed. ),Entomology of Antarctica (Antarctic Research Series 10). Washington DC American Geiphysical Union,pp. 105–122.

  • Wallwork J. A. 1973. Zoogeography of some terrestrial microarthropoda in Antarctica. Biol. Rev. 48:233–2259.

    Google Scholar 

  • Wallwork J. A. 1981. A new aquatic oribatid mite from western Australia (Acari:Cryptostigmata: Ameronothridae). Acarologia 22:333–339.

    Google Scholar 

  • Weigmann G. 1975. Vorkommen von Ameronothrus (Acari,Oribatei)im Litoral Südafrikas. Verö Inst. Meeresforsch. Bremerh. 15:65–67.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marshall, D.J., Convey, P. Latitudinal variation in habitat specificity of ameronothrid mites (Oribatida). Exp Appl Acarol 34, 21–35 (2002). https://doi.org/10.1023/B:APPA.0000044437.17333.82

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:APPA.0000044437.17333.82

Navigation