Skip to main content
Log in

On Solution to an Optimal Shape Design Problem in 3-Dimensional Linear Magnetostatics

  • Published:
Applications of Mathematics Aims and scope Submit manuscript

Abstract

In this paper we present theoretical, computational, and practical aspects concerning 3-dimensional shape optimization governed by linear magnetostatics. The state solution is approximated by the finite element method using Nédélec elements on tetrahedra. Concerning optimization, the shape controls the interface between the air and the ferromagnetic parts while the whole domain is fixed. We prove the existence of an optimal shape. Then we state a finite element approximation to the optimization problem and prove the convergence of the approximated solutions. In the end, we solve the problem for the optimal shape of an electromagnet that arises in the research on magnetooptic effects and that was manufactured afterwards.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Begis, R. Glowinski: Application de la méthode des éléments finis à la resolution d'un problème de domaine optimal. Méthodes de résolution des problèmes. Appl. Math. Optim. 2 (1975), 130–169. (In French.)

    Google Scholar 

  2. A. Bossavit: Computational Electromagnetism. Variational Formulations, Complementarity, Edge Elements. Academic Press, Orlando, 1998.

    Google Scholar 

  3. D. Braess: Finite Elements. Theory, Fast Solvers, and Applications in Solid Mechanics. Cambridge University Press, Cambridge, 2001.

    Google Scholar 

  4. J. Chleboun, R. Mäkinen: Primal hybrid formulation of an elliptic equation in smooth optimal shape problems. Adv. Math. Sci. Appl. 5 (1995), 139–162.

    Google Scholar 

  5. P. Doktor: On the density of smooth functions in certain subspaces of Sobolev spaces. Comment. Math. Univ. Carolin. 14 (1973), 609–622.

    Google Scholar 

  6. G. E. Farin: Curves and Surfaces for Computer-Aided Geometric Design: A Practical Guide. Academic Press, Boston, 1997.

    Google Scholar 

  7. V. Girault, P.-A. Raviart: Finite Element Methods for Navier-Stokes equations. Theory and Algorithms. Springer-Verlag, Berlin, 1986.

    Google Scholar 

  8. W. Hackbusch, S. A. Sauter: Composite finite elements for the approximation of PDEs on domains with complicated micro-structures. Numer. Math. 75 (1997), 447–472.

    Google Scholar 

  9. W. Hackbusch, S. A. Sauter: Composite finite elements for problems containing small geometric details. II: Implementation and numerical results. Comput. Vis. Sci. 1 (1997), 15–25.

    Google Scholar 

  10. J. Haslinger, T. Kozubek: A fictitious domain approach for a class of Neumann boundary value problems with applications in shape optimization. East-West J. Numer. Math. 8 (2000), 1–23.

    Google Scholar 

  11. J. Haslinger, P. Neittaanmäki: Finite Element Approximation for Optimal Shape, Material and Topology Design, 2nd ed. Wiley, Chichester, 1996.

    Google Scholar 

  12. R. Hiptmair: Multilevel preconditioning for mixed problems in three dimensions. PhD. thesis. University of Augsburg, 1996.

  13. I. Kopřva, D. Hrabovský, K. Postava, D. Ciprian, and J. Pištora: Anisotropy of the quadratic magneto-optical effects in a cubic crystal. Proceedings of SPIE, Vol. 4016. 2000, pp. 54–59.

    Google Scholar 

  14. M. Křížk, P. Neittaanmäki: Mathematical and Numerical Modelling in Electrical Engineering. Theory and Practice. Kluwer Academic Publishers, Dordrecht, 1996.

    Google Scholar 

  15. M. Kuhn, U. Langer, and J. Schöberl: Scientific computing tools for 3d magnetic field problems. In: The Mathematics of Finite Elements and Applications. Proceedings of the 10th conference MAFELAP, 1999 (J R. Whiteman, ed.). 2000, pp. 239–258.

  16. D. Lukáš: Shape optimization of homogeneous electromagnets. Scientific Computing in Electrical Engineering. Lect. Notes Comput. Sci. Eng. Vol. 18 (U. van Rienen, M. Günther, and D. Hecht, eds.). 2001, pp. 145–152.

  17. D. Lukáš: Optimal Shape Design in Magnetostatics. PhD. thesis. VŠB-Technical University, Ostrava, 2003.

    Google Scholar 

  18. D. Lukáš, I. KopDe °řiva, D. Ciprian, and J. Pištora: Shape optimization of homogeneous electromagnets and their application to measurements of magnetooptic effects. Records of COMPUMAG (2001), 156–157.

  19. D. Lukáš, W. Mühlhuber, and M. Kuhn: An object-oriented library for the shape optimization problems governed by systems of linear elliptic partial differential equations. Transactions of the VŠB-Technical University Ostrava 1 (2001), 115–128.

    Google Scholar 

  20. D. Lukáš, D. Ciprian, J. Pištora, K. Postava, and M. Foldyna: Multilevel solvers for 3-dimensional optimal shape design with an application to magneto-optics. Proceedings of the 9th International Symposium on Microwave and Optical Technology (ISMOT 2003, Ostrava), SPIE Vol. 5445. 2004, pp. 235–239.

    Google Scholar 

  21. J. Lukeš, J. Malý: Measure and Integral. MATFYZPRESS, Praha, 1995.

    Google Scholar 

  22. J. C. Nédélec: Mixed finite elements in ℝ 3. Numer. Math. 35 (1980), 315–341.

    Google Scholar 

  23. O. Pironneau: Optimal Shape Design for Elliptic Systems. Springer Series in Computational Physics. Springer-Verlag, New York, 1984.

    Google Scholar 

  24. J. Pištora, K. Postava, and R. Šebesta: Optical guided modes in sandwiches with ultrathin metallic films. Journal of Magnetism and Magnetic Materials 198–199 (1999), 683–685.

  25. K. Postava, D. Hrabovský, J. Pištora, A. R. Fert, Š. Višňovský, and T. Yamaguchi: Anisotropy of quadratic magneto-optic effects in reflection. J. Appl. Phys. 91 (2002), 7293–7295.

    Google Scholar 

  26. P.-A. Raviart and J. M. Thomas: A mixed finite element method for second order elliptic problems. Lecture Notes in Math. 606 (1977), 292–315.

    Google Scholar 

  27. S. Reitzinger, J. Schöberl: An algebraic multigrid method for finite element discretizations with edge elements. Numer. Linear Algebra Appl. 9 (1997), 223–238.

    Google Scholar 

  28. J. Schöberl: NETGEN: An advancing front 2D/3D-mesh generator based on abstract rules. Comput. Vis. Sci. 1 (1997), 41–52.

    Google Scholar 

  29. N. Takahashi: Optimization of die press model. Proceedings of the TEAM Workshop in the Sixth Round (Okayama, Japan), March 1996.

  30. U. van Rienen: Numerical methods in computational electrodynamics. Linear Systems in Practical Applications, Lect. Notes Comp. Sci. Engrg. Vol. 12. Springer-Verlag, Berlin, 2001.

    Google Scholar 

  31. A. K. Zvedin, V. A. Kotov: Modern Magnetooptics and Magnetooptical Materials. Institute of Physics Publishing, Bristol and Philadelphia, 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lukáš, D. On Solution to an Optimal Shape Design Problem in 3-Dimensional Linear Magnetostatics. Applications of Mathematics 49, 441–464 (2004). https://doi.org/10.1023/B:APOM.0000048122.27970.19

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:APOM.0000048122.27970.19

Navigation