Advertisement

Applied Categorical Structures

, Volume 12, Issue 5–6, pp 537–576 | Cite as

Categorical and Combinatorial Aspects of Descent Theory

  • Ross Street
Article

Abstract

There is a construction which lies at the heart of descent theory. The combinatorial aspects of this paper concern the description of the construction in all dimensions. The description is achieved precisely for strict n-categories and outlined for weak n-categories. The categorical aspects concern the development of descent theory in low dimensions in order to provide a template for a theory in all dimensions. The theory involves non-abelian cohomology, stacks, torsors, homotopy, and higher-dimensional categories. Many of the ideas are scattered through the literature or are folklore; a few are new.

n-category weak n-category stack cohomology descent factorization system computad parity complex torsor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aitchison, I.: String diagrams for non-abelian cocycle conditions, Handwritten notes, talk presented at Louvain-la-Neuve, Belgium, 1987.Google Scholar
  2. 2.
    Al-Agl, F. and Steiner, R.: Nerves of multiple categories, Proc. London Math. Soc. 66 (1993), 92–128.Google Scholar
  3. 3.
    Barr, M.: Exact Categories, Lecture Notes in Math. 236, Springer, Berlin, 1971, pp. 1–120.Google Scholar
  4. 4.
    Batanin, M.: On the definition of weak ω-category, Macquarie Mathematics Report 96/207, 1996, 24 pages.Google Scholar
  5. 5.
    Batanin, M.: Monoidal globular categories as a natural environment for the theory of weak n-categories, Adv. Math. 136 (1998), 39–103.Google Scholar
  6. 6.
    Batanin, M.: Computads for finitary monads on globular sets, in Higher Category Theory (Evanston, IL, 1997), Contemp. Math. 230, Amer. Math. Soc., 1998, pp. 37–57.Google Scholar
  7. 7.
    Batanin, M.: On the Penon method of weakening algebraic structures, J. Pure Appl. Algebra 172 (2002), 1–23.Google Scholar
  8. 8.
    Batanin, M.: Computads and slices of operads, Preprint, math.CT/0209035; submitted.Google Scholar
  9. 9.
    Batanin, M. and Street, R.: The universal property of the multitude of trees, J. Pure Appl. Algebra 154 (2000), 3–13.Google Scholar
  10. 10.
    Batanin, M. and Weber, M.: Multitensors and higher operads, in preparation; Talks to Australian Category Seminar, 25 Nov. 1998, 2 Dec. 1998, 11 Jul. 2001.Google Scholar
  11. 11.
    Bénabou, J.: Introduction to bicategories, in Lecture Notes in Math. 47, Springer-Verlag, Berlin, 1967, pp. 1–77.Google Scholar
  12. 12.
    Betti, R., Carboni, A., Street, R. and Walters, R.: Variation through enrichment, J. Pure Appl. Algebra 29 (1983), 109–127.Google Scholar
  13. 13.
    Borceux, F.: Handbook of Categorical Algebra 2, Categories and Structures, Cambridge University Press, 1994.Google Scholar
  14. 14.
    Borceux, F. and Janelidze, G.: Galois Theories, Cambridge Studies in Advanced Mathematics 72, Cambridge University Press, Cambridge, 2001.Google Scholar
  15. 15.
    Carboni, A., Johnson, S., Street, R. and Verity, D.: Modulated bicategories, J. Pure Appl. Algebra 94 (1994), 229–282.Google Scholar
  16. 16.
    Conduché, F.: Au sujet de l'existence d'adjoints à droite aux foncteurs “image réciproque” dans la catégorie des catégories, C. R. Acad. Sci. Paris 275 (1972), A891–894.Google Scholar
  17. 17.
    Crans, S.: On combinatorial models for higher dimensional homotopies, Thesis, Univ. Utrecht, 1995.Google Scholar
  18. 18.
    Day, B.: On closed categories of functors, in Midwest Category Seminar Reports IV, Lecture Notes in Math. 137, Springer-Verlag, Berlin, 1970, pp. 1–38.Google Scholar
  19. 19.
    Day, B.: A reflection theorem for closed categories, J. Pure Appl. Algebra 2 (1972), 1–11.Google Scholar
  20. 20.
    De Meyer, F. and Ingraham, E.: Separable Algebras over Commutative Rings, Lecture Notes in Math. 181, Springer-Verlag, Berlin, 1971.Google Scholar
  21. 21.
    Duskin, J. W.: An outline of non-abelian cohomology in a topos (I): The theory of bouquets and gerbes, Cahiers Topologie Géom. Différentielle Catég. 23(2) (1982), 165–192.Google Scholar
  22. 22.
    Duskin, J. W.: The Azumaya complex of a commutative ring, in Lecture Notes in Math. 1348, Springer-Verlag, Berlin, 1988, pp. 107–117.Google Scholar
  23. 23.
    Duskin, J. W.: An outline of a theory of higher dimensional descent, Bull. Soc. Math. Belgique 41(2) (1989), 249–277; also see MR#91c:18013.Google Scholar
  24. 24.
    Eilenberg, S. and Kelly, G. M.: Closed categories, in Proc. Conf. Categorical Algebra at La Jolla 1965, Springer-Verlag, Berlin, 1966, pp. 421–562.Google Scholar
  25. 25.
    Eilenberg, S. and Street, R.: Rewrite systems, algebraic structures, and higher-order categories, Handwritten manuscripts circa 1986, somewhat circulated.Google Scholar
  26. 26.
    Giraud, J.: Méthode de la descente, Bull. Soc. Math. France Mém. 2, 1964.Google Scholar
  27. 27.
    Giraud, J.: Cohomologie non abélienne, Grundlehren Math. Wiss. 179, Springer-Verlag, Berlin, 1971.Google Scholar
  28. 28.
    Gordon, R., Power, A. J. and Street, R.: Coherence for tricategories, Mem. Amer. Math. Soc. 117 (1995), 558.Google Scholar
  29. 29.
    Gray, J.W.:Formal Category Theory: Adjointness for 2-Categories, Lecture Notes in Math. 391, Springer-Verlag, Berlin, 1974.Google Scholar
  30. 30.
    Gray, J. W.: Coherence for the tensor product of 2-categories, and braid groups, in Algebra, Topology, and Category Theory (a collection of papers in honour of Samuel Eilenberg), Academic Press, 1976, pp. 63–76.Google Scholar
  31. 31.
    Grothendieck, A.: Pursuing Stacks, typed notes, 1983.Google Scholar
  32. 32.
    Heller, A.: Homotopy theories, Mem. Amer. Math. Soc. 71 (1988), 383.Google Scholar
  33. 33.
    Janelidze, G.: Precategories and Galois theory, in Lecture Notes in Math. 1488, Springer, Berlin, 1991, pp. 157–173.Google Scholar
  34. 34.
    Janelidze, G., Schumacher, D. and Street, R.: Galois theory in variable categories, Appl. Categ. Structures 1 (1993), 103–110.Google Scholar
  35. 35.
    Johnson, M.: Pasting diagrams in n-categories with applications to coherence theorems and categories of paths, Ph.D. thesis, University of Sydney, October 1987.Google Scholar
  36. 36.
    Johnson, M. and Walters, R.: On the nerve of an n-category, Cahiers Topologie Géom. Différentielle Catég. 28 (1987), 257–282.Google Scholar
  37. 37.
    Johnstone, P. T.: Topos Theory, Academic Press, 1977.Google Scholar
  38. 38.
    Joyal, A.: Disks, duality and Θ-categories, Preprint and talk at the AMS Meeting in Montréal, September 1997.Google Scholar
  39. 39.
    Joyal, A. and Street, R.: The geometry of tensor calculus I, Adv. Math. 88 (1991), 55–112.Google Scholar
  40. 40.
    Joyal, A. and Street, R.: Braided tensor categories, Adv. Math. 102 (1993), 20–78.Google Scholar
  41. 41.
    Joyal, A. and Street, R.: An introduction to Tannaka duality and quantum groups, in Category Theory, Proceedings, Como 1990, Lecture Notes in Math. 1488, Springer-Verlag, Berlin, 1991, pp. 411–492.Google Scholar
  42. 42.
    Joyal, A. and Street, R.: Pullbacks equivalent to pseudopullbacks, Cahiers Topologie Géom. Différentielle Catég. 34 (1993), 153–156.Google Scholar
  43. 43.
    Kelly, G. M.: Basic Concepts of Enriched Category Theory, London Math. Soc. Lecture Notes Series 64, Cambridge University Press, 1982.Google Scholar
  44. 44.
    Kelly, G. M. and Street, R.: Review of the elements of 2-categories, in Lecture Notes in Math. 420, 1974, pp. 75–103.Google Scholar
  45. 45.
    Leinster, T.: A survey of definitions of n-category, Theory Appl. Categ. 10 (2002), 1–70.Google Scholar
  46. 46.
    Mac Lane, S.: Categories for the Working Mathematician, Graduate Texts in Math. 5, Springer-Verlag, Berlin, 1971.Google Scholar
  47. 47.
    Makkai, M. and Zawadowski, M.: Duality for simple ω-categories and disks, Theory Appl. Categ. 8 (2001), 114–243.Google Scholar
  48. 48.
    Paré, R. and Schumacher, D.: Abstract families and the adjoint functor theorem, in Lecture Notes in Math. 661, 1978, pp. 1–124.Google Scholar
  49. 49.
    Penon, J.: Approche polygraphique des ∞-categories non strictes, Cahiers Topologie Géom. Différentielle Catég. 40 (1999), 31–80.Google Scholar
  50. 50.
    Power, A. J.: An n-categorical pasting theorem, in A. Carboni, M. C. Pedicchio and G. Rosolini (eds), Category Theory, Proceedings, Como 1990, Lecture Notes in Math. 1488, Springer-Verlag, 1991, pp. 326–358.Google Scholar
  51. 51.
    Roberts, J. E.: Mathematical aspects of local cohomology, in Proc. Colloquium on Operator Algebras and their Application to Mathematical Physics, Marseille, 1977.Google Scholar
  52. 52.
    Schumacher, D. and Street, R.: Some parametrized categorical concepts, Comm. Algebra 16 (1988), 2313–2347.Google Scholar
  53. 53.
    Steiner, R.: Tensor products of infinity-categories, Preprint, Univ. Glasgow, 1991.Google Scholar
  54. 54.
    Street, R.: Limits indexed by category-valued 2-functors, J. Pure Appl. Algebra 8 (1976), 149–181.Google Scholar
  55. 55.
    Street, R.: Two dimensional sheaf theory, J. Pure Appl. Algebra 23 (1982), 251–270.Google Scholar
  56. 56.
    Street, R.: Characterization of bicategories of stacks, in Lecture Notes in Math. 962, 1982, pp. 282–291.Google Scholar
  57. 57.
    Street, R.: Enriched categories and cohomology, Quaestiones Math. 6 (1983), 265–283.Google Scholar
  58. 58.
    Street, R.: The algebra of oriented simplexes, J. Pure Appl. Algebra 49 (1987), 283–335.Google Scholar
  59. 59.
    Street, R.: Gray's tensor product of 2-categories, Manuscript, February 1988.Google Scholar
  60. 60.
    Street, R.: Parity complexes, Cahiers Topologie Géom. Différentielle Catég. 32 (1991), 315–343; 35 (1994), 359–361.Google Scholar
  61. 61.
    Street, R.: Descent theory (notes of lectures presented at Oberwolfach, September 1995; see <http://www.maths.mq.edu.au/∼street/Descent.pdf>).Google Scholar
  62. 62.
    Street, R.: Higher categories, strings, cubes and simplex equations, Appl. Categ. Structures 3 (1995), 29–77.Google Scholar
  63. 63.
    Street, R.: Categorical structures, in M. Hazewinkel (ed.), Handbook of Algebra,Vol.1, Elsevier Science, Amsterdam, 1996.Google Scholar
  64. 64.
    Street, R.: The petit topos of globular sets, J. Pure Appl. Algebra 154 (2000), 299–315.Google Scholar
  65. 65.
    Street, R.: Weak omega-categories, in Diagrammatic Morphisms and Applications, Contemp. Math. 318, Amer. Math. Soc., April 2003, pp. 207–213.Google Scholar
  66. 66.
    Street, R. and Walters, R.: The comprehensive factorization of a functor, Bull. Amer. Math. Soc. 79 (1973), 936–941.Google Scholar
  67. 67.
    Trimble, T.: The definition of tetracategory, Handwritten diagrams, August 1995.Google Scholar
  68. 68.
    Verity, D.: Characterization of cubical and simplicial nerves, in preparation.Google Scholar
  69. 69.
    Wolff, H.: ν-cat and ν-graph, J. Pure Appl. Algebra 4 (1974), 123–135.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Ross Street
    • 1
  1. 1.Centre of Australian Category Theory, Mathematics DepartmentMacquarie UniversityNew South WalesAustralia. e-mail

Personalised recommendations