Skip to main content
Log in

Production of 3-hydroxydecanoic acid by recombinant Escherichia coli HB101 harboring phaG gene

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Heterogenous expression of (R)-3-hydroxydecanoyl-ACP:CoA transacylase gene (phaG) isolated from Pseudomonas putida in Escherichia coli HB101 led to the extracellular production of 3-hydroxydecanoic acid (3HD) in a growth medium consisting of carbon source non-related to 3HD structure, while no 3HD was detected in the growth media inoculated with wild type E. coli HB101 and recombinant E. coli HB101 harboring vector pBluescript SK only. 3HD production by E. coli HB101 (pLZZGPp) harboring phaG from fructose was 587 mg/l, approximately three times that from cultivation in glucose under same culture conditions. 3HD production was affected by timing of fructose addition and fructose concentration in the culture. As an inhibitor of fatty acid de novo synthesis, the presence of triclosan in the culture could increase 3HD production by E. coli HB101 (pLZZGPp) by about 20–40%. The results further confirmed that (R)-3-hydroxydecanoyl-ACP:CoA transacylase (PhaG) provides 3HD precursors for medium-chain-length polyhydroxyalkanoate synthesis. At the same time, this phenomenon showed that recombinant organisms can be used for production of certain fine chemicals such as hydroxyalkanoic acids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson A.J. and Dawes E.A. 1990. Occurrence, metabolism, metabolic role and industrial uses of bacterial polyhydroxy-alkanoates. Microbiol. Rev. 54: 450-472.

    Google Scholar 

  • Anderson K.B. and von Meyenburg K. 1980. Are growth rates of Escherichia coli in batch cultures limited by respiration? J. Bacteriol. 144: 114-123.

    Google Scholar 

  • Barnes E.M. Jr., Wakil S.J. and Swindell A.C. 1970. Purification and properties of a palmityl thioesterase II from Escherichia coli. J. Biol. Chem. 245: 3122-3128.

    Google Scholar 

  • Byrom D. 1992. Production of poly-ß-hydroxybutyrate: poly-ß-hydroxyvalerate copolymers. 103: 247-250.

    Google Scholar 

  • Chang D.E., Shin S., Rhee J.S. and Pan J.G. 1999. Acetate metabolism in pta mutant of Escherichia coli W3110: importance of maintaining acetyl coenzyme. A flux for growth and survival. J. Bacteriol. 181: 6656-6663.

    Google Scholar 

  • Chen G.Q., Wu Q., Xi J., Yu H.P. and Chan A. 2000. Microbial production of biopolyesters-polyhydroxyalkanoates. Prog. Nat. Sci. 10: 843-850.

    Google Scholar 

  • Chen G.Q., Zhang G., Park S.J. and Lee S.Y. 2001. Industrial production of poly(hydroxybutyrate-co-hydroxyhexanoate). Appl. Microbiol. Biotechnol. 57: 50-55.

    Google Scholar 

  • DiRusso C.C., Black P.N. and Weimar J.D. 1999. Molecular inroads into the regulation and metabolism of fatty acids, lessons from bacteria. Prog. Lipid Res. 38: 129-197.

    Google Scholar 

  • Fiedler S., Steinbüchel A. and Rehm B.H.A. 2000. PhaG-mediated synthesis of poly(3-hydroxyalkanoates) consisting of medium-chain-length constituents from nonrelated carbon sources in recombinant Pseudomonas fragi. Appl. Environ. Microbiol. 66: 2117-2124.

    Google Scholar 

  • Fukui T., Shiomi N. and Doi Y. 1998. Expression and characterization of (R)-specific enoyl coenzyme A hydratase involved in polyhydroxyalkanoate biosynthesis by Aeromonas caviae. J. Bacteriol. 180: 667-673.

    Google Scholar 

  • Hang X., Zhang G., Wang G., Zhao X. and Chen G.Q. 2002. PCR cloning of polyhydroxyalkanoate biosynthesis genes from Burkholderia caryphylli and their functional expression in recombinant Escherichia coli. FEMS Microbiol. Lett. (in press)

  • He W., Tian W., Zhang G., Chen G.Q. and Zhang Z. 1998. Production of novel polyhydroxyalkanoates by Pseudomonas stutzeri 1317 from glucose and soybean oil. FEMS Microbiol. Lett. 169: 45-49.

    Google Scholar 

  • Heath R.J., Yu Y.T., Shapiro M.A., Olson E. and Rock C.O. 1998. Broad spectrum antimicrobial biocides target the FabI component of fatty acid synthesis. J. Biol. Chem. 273: 30316-30320.

    Google Scholar 

  • Hoffmann N., Steinbüchel A. and Rehm B.H.A. 2000a. The Pseudomonas aeruginosa phaG gene product is involved in the synthesis of polyhydroxyalkanoic acid consisting of medium-chain-length constituents from non-related carbon sources. FEMS Microbiol. Lett. 184: 253-259.

    Google Scholar 

  • Hoffmann N., Steinbüchel A. and Rehm B.H.A. 2000b. Homologous functional expression of cryptic phaG from Pseudomonas oleovorans establishes the transacylase-mediated polyhydroxy alkanoate biosynthetic pathway. Appl. Microbiol. Biotechnol. 54: 665-670.

    Google Scholar 

  • Holms W.H. 1996. Flux analysis and control of the central metabolic pathways in Escherichia coli. FEMS Microbiol. Rev. 19: 85-116.

    Google Scholar 

  • Hrabak O. 1992. Industrial production of ploy-ß-hydroxybutyrate. FEMS Microbiol. Rev. 103: 251-256.

    Google Scholar 

  • Huijbert G.N.M., de Rijk T.C., deWaard P. and Eggink G. 1994. 13C Nuclear magnetic resonance studies of Pseudomonas putida fatty acid metabolic routes involved in poly(3-hydroxyalkanoate) synthesis. J. Bacteriol. 176: 1661-1666.

    Google Scholar 

  • Kessler B. and Witholt B. 2001. Factors involved in the regulatory network of polyhydroxyalkanoate metabolism. J. Biotechnol. 86: 97-104.

    Google Scholar 

  • Lee S.Y., Lee Y. and Wang F. 1999. Chiral compounds from bacterial polyesters: sugars to plastics to fine chemicals. Biotech. Bioeng. 65: 363-368.

    Google Scholar 

  • Lee Y., Park S.H., Lim I.T., Han K. and Lee S.Y. 2000. Preparation of alkyl (R)-(—)3-hydroxybutyrate by acidic alcoholysis of poly-(R)-(—)-3-hydroxyl-butyrate. Enzyme Microb. Technol. 27: 33-36.

    Google Scholar 

  • Madison L.L. and Huisman G.W. 1999. Metabolic engineering of poly(3-hydrocyalkanoates): from DNA to plastic. Microbiol. Mol. Biol. Rev. 63: 21-53.

    Google Scholar 

  • Magnuson K., Jackowshi S., Rock C.O. and Cronan J.E. Jr. 1993. Regulation of fatty acid biosynthesis in Escherichia coli. Microbiol. Rev. 57: 522-542.

    Google Scholar 

  • Miller G.L. 1959. Use of dinitrosalicylic acid reagent for determi-nation of reducing sugar. Anal. Chem. 31: 426

    Google Scholar 

  • Qi Q., Steinbüchel A. and Rehm B.H.A. 1998. Metabolic routing towards polyhydroxyalkanoic acid synthesis in recombinant Escherichia coli (fadR ): inhibition of fatty acid ß-oxidation by acrylic acid. FEMS Microbiol. Lett. 167: 89-94.

    Google Scholar 

  • Ren Q., Sierro N., Witholt B. and Kessler B. 2000. FabG, an NADPH-dependent 3-ketoacyl reductase of Pseudomonas aeruginosa, provides precursors for medium-chain-length poly-3-hydroxyalkanoate biosynthesis in Escherichia coli. J. Bacteriol. 182: 2978-2981.

    Google Scholar 

  • Rehm B.H.A., Krüger N. and Steinbüchel A. 1998. A new metabolic link between fatty acid de novo synthesis and polyhydroxyalkanoic acid synthesis. J. Biol. Chem. 273: 24044-24051.

    Google Scholar 

  • Rehm B.H.A. and Steinbüchel A. 1999. Biochemical and genetic analysis of PHA synthases and other proteins required for PHA synthesis. Int. J. Biol. Macromol. 25: 3-19.

    Google Scholar 

  • Rehm B.H.A., Mitsky T.A. and Steinbüchel A. 2001. Role of fatty acid de novo biosynthesis in polyhydroxyalkanoic acid (PHA) and rhamnolipid synthesis by pseudomonads: establishment of the transacylase (PhaG)-mediated pathway for PHA biosynthesis in Escherichia coli. Appl. Environ. Microbiol. 67: 3102-3109.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, Z., Zhang, MJ., Zhang, G. et al. Production of 3-hydroxydecanoic acid by recombinant Escherichia coli HB101 harboring phaG gene. Antonie Van Leeuwenhoek 85, 93–101 (2004). https://doi.org/10.1023/B:ANTO.0000020275.23140.ca

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:ANTO.0000020275.23140.ca

Navigation