Skip to main content
Log in

Multistart Tabu Search Strategies for the Unconstrained Binary Quadratic Optimization Problem

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

This paper describes and experimentally compares five rather different multistart tabu search strategies for the unconstrained binary quadratic optimization problem: a random restart procedure, an application of a deterministic heuristic to specially constructed subproblems, an application of a randomized procedure to the full problem, a constructive procedure using tabu search adaptive memory, and an approach based on solving perturbed problems. In the solution improvement phase a modification of a standard tabu search implementation is used. A computational trick applied to this modification – mapping of the current solution to the zero vector – allowed to significantly reduce the time complexity of the search. Computational results are provided for the 25 largest problem instances from the OR-Library and, in addition, for the 18 randomly generated larger and more dense problems. For 9 instances from the OR-Library new best solutions were found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alidaee, B., G. Kochenberger, and A. Ahmadian. (1994). “0—1 Quadratic Programming Approach for the Optimal Solution of Two Scheduling Problems.” International Journal of Systems Science 25, 401-408.

    Google Scholar 

  • Barahona, F., M. Grötschel, M. Jünger, and G. Reinelt. (1988). “An Application of Combinatorial Optimization to Statistical Physics and Circuit Layout Design.” Operations Research 36, 493-513.

    Google Scholar 

  • Barahona, F., M. Jünger, and G. Reinelt. (1989). “Experiments in Quadratic 0—1 Programming.” Mathematical Programming 44, 127-137.

    Article  Google Scholar 

  • Beasley, J.E. (1996). “Obtaining Test Problems Via Internet.” Journal of Global Optimization 8, 429-433.

    Google Scholar 

  • Beasley, J.E. (1998). “Heuristic Algorithms for the Unconstrained Binary Quadratic Programming Problem.” Working paper, The Management School, Imperial College, London, England.

    Google Scholar 

  • Billionnet, A., and A. Sutter. (1994). “Minimization of a Quadratic Pseudo-Boolean Function.” European Journal of Operational Research 78, 106-115.

    Article  Google Scholar 

  • Boros, E., and P.L. Hammer. (1991). “The Max-Cut Problem and Quadratic 0—1 Optimization: Polyhedral Aspects, Relaxations and Bounds.” Annals of Operations Research 33, 151-180.

    Article  Google Scholar 

  • Carter, M.W. (1984). “The Indefinite Zero—One Quadratic Problem.” Discrete Applied Mathematics 7, 23- 44.

    Article  Google Scholar 

  • Çela, E. (1998). The Quadratic Assignment Problem: Theory and Algorithms. Dordrecht: Kluwer Academic.

    Google Scholar 

  • Charon, I., and O. Hudry. (1993). “The Noising Method: A New Method for Combinatorial Optimization.” Operations Research Letters 14, 133-137.

    Article  Google Scholar 

  • Codenotti, B., G. Manzini, L. Margara, and G. Resta. (1996). “Perturbation: An Efficient Technique for the Solution of Very Large Instances of the Euclidean TSP.” INFORMS Journal on Computing 8, 125-133.

    Google Scholar 

  • Dearing, P.M., P.L. Hammer, and B. Simeone. (1988). “Boolean and Graph-Theoretic Formulations of the Simple Plant Location Problem.” RUTCOR Research Report 3-88, Rutgers University, New Brunswick, USA.

    Google Scholar 

  • De Simone, C., M. Diehl, M. Jünger, P. Mutzel, G. Reinelt, and G. Rinaldi. (1995). “Exact Ground States of Ising Spin Glasses: New Experimental ResultsWith a Branch and Cut Algorithm.” Journal of Statistical Physics 80, 487-496.

    Google Scholar 

  • Feo, T.A., and M.G.C. Resende. (1995). “Greedy Randomized Adaptive Search Procedures.” Journal of Global Optimization 6, 109-133.

    Article  Google Scholar 

  • Fleurent, C., and F. Glover. (1999). “Improved Constructive Multistart Strategies for the Quadratic Assignment Problem Using Adaptive Memory.” INFORMS Journal on Computing 11, 198-204.

    Google Scholar 

  • Gallo, G., P.L. Hammer, and B. Simeone. (1980). “Quadratic Knapsack Problems.”Mathematical Programming 12, 132-149.

    Google Scholar 

  • Glover, F. (1977). “Heuristics for Integer Programming Using Surrogate Constraints.” Decision Sciences 8, 156-166.

    Google Scholar 

  • Glover, F. (1986). “Future Paths for Integer Programming and Links to Artificial Intelligence.” Computers and Operations Research 13, 533-549.

    Google Scholar 

  • Glover, F., B. Alidaee, C. Rego, and G. Kochenberger. (2002). “One-Pass Heuristics for Large-Scale Unconstrained Binary Quadratic Problems.” European Journal of Operational Research 137, 272-287.

    Article  Google Scholar 

  • Glover, F., G.A. Kochenberger, and B. Alidaee. (1998). “Adaptive Memory Tabu Search for Binary Quadratic Programs.” Management Science 44, 336-345.

    Google Scholar 

  • Glover, F., and M. Laguna. (1997). Tabu Search.Hingham, MA: Kluwer Academic.

    Google Scholar 

  • Hammer, P.L. (1968). “Plant Location — A Pseudo-Boolean Approach.” Israel Journal of Technology 6, 330-332.

    Google Scholar 

  • Hammer, P., and S. Rudeanu. (1968). Boolean Methods in Operations Research.New York: Springer.

    Google Scholar 

  • Hansen, P. (1979). “Methods of Nonlinear 0—1 Programming.” Annals of Discrete Mathematics 5, 53-70.

    Google Scholar 

  • Helmberg, C., and F. Rendl. (1998). “Solving Quadratic (0,1)-Problems by Semidefinite Programs and Cutting Planes.” Mathematical Programming 82, 291-315.

    Google Scholar 

  • Jünger, M., A. Martin, G. Reinelt, and R. Weismantel. (1994). “Quadratic 0/1 Optimization and a Decomposition Approach for the Placement of Electronic Circuits.” Mathematical Programming 63, 257-279.

    Article  Google Scholar 

  • Krarup, J., and P.M. Pruzan. (1978). “Computer-Aided Layout Design.” Mathematical Programming Study 9, 75-94.

    Google Scholar 

  • Laughunn, D.J. (1970). “Quadratic Binary Programming.” Operations Research 14, 454-461.

    Google Scholar 

  • Li, Y., P.M. Pardalos, and M.G.C. Resende. (1994). “A Greedy Randomized Adaptive Search Procedure for the Quadratic Assignment Problem.” In DIMACS Series in Discrete Mathematics and Theoretical Computer Science, Vol. 16. Providence, RI: Amer. Math. Soc., pp. 237-261.

    Google Scholar 

  • Lodi, A., K. Allemand, and T.M. Liebling. (1999). “An Evolutionary Heuristic for Quadratic 0—1 Programming.” European Journal of Operational Research 119, 662-670.

    Article  Google Scholar 

  • McBride, R.D., and J.S. Yormark. (1980). “An Implicit Enumeration Algorithm for Quadratic Integer Programming.” Management Science 26, 282-296.

    Google Scholar 

  • Merz, P., and B. Freisleben. (1999). “Genetic Algorithms for Binary Quadratic Programming.” In W. Banzhaf, J. Daida, A.E. Eiben, M.H. Garzon, V. Honavar, M. Jakiela, and R.E. Smith (eds.), Proceedings of the Genetic and Evolutionary Computation Conference, Vol. 1. Orlando, FL: Morgan Kaufmann, pp. 417-424.

    Google Scholar 

  • Palubeckis, G. (1992). “Heuristics with a Worst-Case Bound for Unconstrained Quadratic 0—1 Programming.” Informatica 3, 225-240.

    Google Scholar 

  • Palubeckis, G. (1995). “A Heuristic-Based Branch and Bound Algorithm for Unconstrained Quadratic Zero—One Programming.” Computing 54, 283-301.

    Article  Google Scholar 

  • Pardalos, P.M. (1991). “Construction of Test Problems in Quadratic Bivalent Programming.” ACM Transactions on Mathematical Software 17, 74-87.

    Article  Google Scholar 

  • Pardalos, P.M., and S. Jha. (1991). “Graph Separation Techniques for Quadratic Zero—One Programming.” Computers and Mathematics with Applications 21, 107-113.

    Google Scholar 

  • Pardalos, P.M., and G.P. Rodgers. (1990). “Computational Aspects of a Branch and Bound Algorithm for Quadratic Zero—One Programming.” Computing 45, 131-144.

    Article  Google Scholar 

  • Pardalos, P.M., and G.P. Rodgers. (1992). “A Branch and Bound Algorithm for the Maximum Clique Problem.” Computers and Operations Research 19, 363-375.

    Article  Google Scholar 

  • Pardalos, P.M., and J. Xue. (1994). “The Maximum Clique Problem.” Journal of Global Optimization 4, 301-328.

    Google Scholar 

  • Picard, J.C., and H.D. Ratliff. (1975). “Minimum Cuts and Related Problems.” Networks 5, 357-370.

    Google Scholar 

  • Poljak, S., and Z. Tuza. (1995). “Maximum Cuts and Large Bipartite Subgraphs.” In DIMACS Series in Discrete Mathematics and Theoretical Computer Science, Vol. 20. Providence, RI: Amer. Math. Soc., pp. 181-244.

    Google Scholar 

  • Shih, M., and E.S. Kuh. (1993). “Quadratic Boolean Programming for Performance-Driven System Par282 PALUBECKIS titioning.” In Proceedings of the 30th ACM/IEEE Design Automation Conference, Dallas, TX. ACM Press, pp. 761-765.

    Google Scholar 

  • Skorin-Kapov, J. (1990). “Tabu Search Applied to the Quadratic Assignment Problem.” ORSA Journal on Computing 2, 33-45.

    Google Scholar 

  • Storer, R.H., S.D. Wu, and R. Vaccari. (1992). “New Search Spaces for Sequencing Problems with Application to Job Shop Scheduling.” Management Science 38, 1495-1509.

    Google Scholar 

  • Warszawski, A. (1974). “Pseudo-Boolean Solutions to Multidimensional Location Problems.” Operations Research 22, 1081-1085.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palubeckis, G. Multistart Tabu Search Strategies for the Unconstrained Binary Quadratic Optimization Problem. Ann Oper Res 131, 259–282 (2004). https://doi.org/10.1023/B:ANOR.0000039522.58036.68

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:ANOR.0000039522.58036.68

Navigation