Skip to main content

LSSPER: Solving the Resource-Constrained Project Scheduling Problem with Large Neighbourhood Search

Abstract

This paper presents the Local Search with SubProblem Exact Resolution (LSSPER) method based on large neighbourhood search for solving the resource-constrained project scheduling problem (RCPSP). At each step of the method, a subpart of the current solution is fixed while the other part defines a subproblem solved externally by a heuristic or an exact solution approach (using either constraint programming techniques or mathematical programming techniques). Hence, the method can be seen as a hybrid scheme. The key point of the method deals with the choice of the subproblem to be optimized. In this paper, we investigate the application of the method to the RCPSP. Several strategies for generating the subproblem are proposed. In order to evaluate these strategies, and, also, to compare the whole method with current state-of-the-art heuristics, extensive numerical experiments have been performed. The proposed method appears to be very efficient.

This is a preview of subscription content, access via your institution.

References

  1. Adams, J., Balas, E., and Zawack, D. (1988). “ The Shifting Bottleneck Procedure for Job Shop Scheduling.” Management Science 34, 391-401.

    Google Scholar 

  2. Ahuja, R.K., Ergun, O., Orlin, J.B., and Punnen, A.P. (2002). “A Survey of Very Large-Scale Neighborhood Search Techniques.” Discrete Applied Mathematics 123(1-3), 75-102.

    Article  Google Scholar 

  3. Alvarez-Valdés, R. and Tamarit, J.M. (1989). “Heuristic Algorithms for Resource-Constrained Project Scheduling: A Review and an Empirical Analysis.” In R. Slowiński and J. Weglarz (eds.), Advances in Projet Scheduling. Amsterdam: Elsevier, pp. 113-134.

    Google Scholar 

  4. Applegate, D. and Cook, B. (1991). “A Computational Study of the Job Shop Scheduling Problem.” ORSA Journal of Computing 3(2), 149-156.

    Google Scholar 

  5. Artigues, C., Michelon, P., and Reusser, S. (2003). “Insertion Techniques for Static and Dynamic Resource-Constrained Project Scheduling.” European Journal of Operational Research 149(2), 249-267.

    Article  Google Scholar 

  6. Baar, T., Brucker, P., and Knust, S. (1998). “Tabu-Search Algorithms and Lower Bounds for the Resource-Constrained Project Scheduling Problem.” In S. Voss, S. Martello, I. Osman, and C. Roucairol (eds.), Metaheuristics: Advances and Trends in Local Search Paradigms for Optimization. Kluwer, pp. 1-18.

  7. Balas, E., Lancia, G., Serafini, P., and Vazacopoulos, A. (1998). “Job Shop Scheduling with Deadlines.” Journal of Combinatorial Optimization 1(4), 329-353.

    Article  Google Scholar 

  8. Baptiste, P. and Le Pape, C. (2000). “Constraint Propagation and Decomposition Techniques for Highly Disjunctive and Highly Cumulative Project Scheduling Problems.” Constraints 5, 119-139.

    Article  Google Scholar 

  9. Baptiste, P., Le Pape, C., and Nuijten, W. (1995). “Constraint-Based Optimization and Approximation for Job-Shop Scheduling.” In AAAI-SIGMAN Workshop on Intelligent Manufacturing Systems, Montreal.

  10. Bell, C.E. and Han, J. (1991). “A New Heuristic SolutionMethod in Resource-Constrained Project Scheduling.” Naval Research Logistics 38, 315-331.

    Google Scholar 

  11. Bent, R. and Van Hentenryck, P. (2001). "A Two-Stage Hybrid Local Search for the Vehicle Routing Problem with Time Windows.” Technical Report CS-01-06, Brown University.

  12. Bouleimen, K. and Lecocq, H. (2003). “A New Efficient Simulated Annealing Algorithm for the Resource-Constrained Project Scheduling Problem.” European Journal of Operational Research 149(2), 249-267.

    Article  Google Scholar 

  13. Brucker, P., Drexl, A., Möring, R., Neumann, K., and Pesch, E. (1999). “Resource-Constrained Project Scheduling: Notation, Classification, Models, and Methods.” European Journal of Operational Research 112, 3-41.

    Article  Google Scholar 

  14. Caseau, Y. and Laburthe, F. (1999). “Effective Forget-and-Extend Heuristics for Scheduling Problems.” In CP-AI-OR'99, Workshop on Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems, Ferrara, Italy.

    Google Scholar 

  15. Cho, J.-H. and Kim, Y.-D. (1997). “A Simulated Annealing Algorithm for Resource Constrained Project Scheduling Problems.” Journal of the Operational Research Society 48, 735-744.

    Article  Google Scholar 

  16. Congram, R., Potts, C., and Van de Velde, S. (2002). “An Iterated Dynasearch Algorithm for the Single-Machine Total Weighted Tardiness Scheduling Problem.” INFORMS Journal on Computing 14(1), 52- 67.

    Article  Google Scholar 

  17. Frangioni, A., Necciari, E., and Scutellà, M.G. (2004). “A Multi-Exchange Neighborhood for Minimum Makespan Machine Scheduling Problems.” Journal of Combinatorial Optimization 8(2), 195-220.

    Article  Google Scholar 

  18. Gendreau, M., Pesant, G., and Rousseau L.-M. (2002). “Using Constraint-Based Operators with Variable Neighborhood Search to Solve the Vehicle Routing Problem with TimeWindows.” Journal of Heuristics 8(1), 43-58.

    Article  Google Scholar 

  19. Glover, F. and Laguna, M. (1997). Tabu Search. Kluwer Academic.

  20. Hartmann, S. (1998). “A Competitive Genetic Algorithm for Resource-Constrained Project Scheduling.” Naval Research Logistics 45, 733-750.

    Article  Google Scholar 

  21. Hartmann, S. (1998). “A Self-Adapting Genetic Algorithm for Project Scheduling Under Resource Constraints.” Naval Research Logistics 49, 433-448.

    Google Scholar 

  22. Hartmann, S. and Kolisch, R. (2000). “Experimental Evaluation of State-of-the-Art Heuristics for the Resource-Constrained Project Scheduling Problem.” European Journal of Operational Research 127(2), 297-316.

    Article  Google Scholar 

  23. Klein, R. and Scholl, A. (1999). “Computing Lower Bound by Destructive Improvement: An Application to Resource-Constrained Project Scheduling.” European Journal of Operational Research 112, 322-346.

    Article  Google Scholar 

  24. Kohlmorgen, U., Schmeck, H., and Haase, F. (1999). “Experiences with Fine-Grained Parallel Genetic Algorithms.” Annals of Operations Research 90, 203-219.

    Article  Google Scholar 

  25. Kolisch, R. (1996). “Serial and Parallel Resource-Constrained Project Scheduling Methods Revisited: Theory and Computation.” European Journal of Operational Research 90, 320-333.

    Article  Google Scholar 

  26. Kolisch, R., Sprecher, A., and Drexl, A. (1998). “Benchmark Instances for Project Scheduling Problems.” In J. Weglarz (ed.), Handbook on Recent Advances in Project Scheduling. Kluwer, pp. 197-212.

  27. Kolisch, R. and Hartmann, S. (1999). “Heuristic Algorithms for the Resource-Constrained Project Scheduling Problem: Classification and Computational Analysis.” In J. Weglarz (ed.), Project Scheduling: Recent Models, Algorithms and Applications. Kluwer, pp. 147-178.

  28. Kolisch, R. and Padman, R. (2001). “An Integrated Survey of Deterministic Project Scheduling.” Omega 29(3), 249-272.

    Article  Google Scholar 

  29. Lee, J.-K. and Kim, Y.-D. (1996). “Search Heuristics for Resource-Constrained Project Scheduling.” Journal of the Operational Research Society 47, 678-689.

    Google Scholar 

  30. Leon, V. and Ramamoorthy, B. (1995). “Strength and Adaptability of Problem-Space Based Neighborhoods for Resource-Constrained Scheduling.” OR Spektrum 17, 173-182.

    Article  Google Scholar 

  31. Li, K.Y. and Willis, R.J. (1992). “An Iterative Scheduling Technique for Resource-Constrained Project Scheduling.” European Journal of Operational Research 56, 370-379.

    Article  Google Scholar 

  32. Mausser, H.E. and Lawrence, S.R. (1997). “Exploiting Block Structure to Improve Resource-Constrained Project Schedules.” In F. Glover, I. Osman, and J. Kelley (eds.), Metaheuristics 1995: State of the Art. Maryland: Kluwer.

    Google Scholar 

  33. Mautor, T. and Michelon, P. (1997). “Mimausa: A New Hybrid Method Combining Exact Solution and Local Search.” In MIC'97, 2nd Metaheuristics International Conference, Sophia Antipolis, France.

    Google Scholar 

  34. Mautor, T. and Michelon, P. (2001). "Mimausa: An Application of Referent Domain Optimization.” Technical Report, Laboratoire d'Informatique d'Avignon.

  35. Merkle, D., Middendorf, M., and Schmeck, H. (2002). “Ant Colony Optimization for Resource-Constrained Project Scheduling.” IEEE Transactions on Evolutionary Computation 6(4), 333-346.

    Article  Google Scholar 

  36. Naphade, K.S., Wu, S., and Storer, S.D. (1997). “Problem Space Search Algorithms for Resource-Constrained Project Scheduling.” Annals of Operations Research 70, 307-326.

    Article  Google Scholar 

  37. Nonobe, K. and Ibaraki, T. (1999). "Formulation and Tabu Search Algorithm for the Resource-Constrained Projet Scheduling Problem (RCPSP).” Technical Report, Department of Applied Mathematis and Physics, Kyoto University, Japan.

    Google Scholar 

  38. Patterson, J. (1984). “A Comparison of Exact Approaches for Solving the Multiple Constrained Resource Project Scheduling Problem.” Management Science 30(7), 854-867.

    Google Scholar 

  39. Pinson, E., Prins, C., and Rullier, F. (1994). “Using Tabu Search for Solving the Resource-Constrained Project Scheduling Problem.” In International Workshop on Project Management and Scheduling, PMS'94, Louvain, Belgique, pp. 102-106.

    Google Scholar 

  40. Pritsker, A.A.B., Waters, L.J., and Wolfe, P.M. (1969). “Multiproject Scheduling with Limited Resources: A Zero-One Programming Approach.” Management Science 16, 93-107.

    Google Scholar 

  41. Sampson, S.E. and Weiss, E.N. (1993). “Local Search Techniques for the Generalized RCPSP.” Naval Research Logistic Quarterly 40, 665-675.

    Google Scholar 

  42. Schirmer, A. (2000). “Case-Based Reasoning and Improved Adaptive Search for Project Scheduling.” Naval Research Logistics 47, 201-222.

    Article  Google Scholar 

  43. Schutten, J.M.J. (1998). “Practical Job Shop Scheduling.” Annals of Operations Research 83, 161-177.

    Article  Google Scholar 

  44. Shaw, P. (1998). “Using Constraint Programming and Local Search Methods to Solve Vehicle Routing Problems.” In Principles and Practice of Constraint Programming CP-98, Pisa, Italy, Lecture Notes in Computer Science, Vol. 1520, pp. 417-431.

    Google Scholar 

  45. Sourd, F. (2001). “Scheduling Tasks on Unrelated Machines: Large Neighborhood Improvement Procedures.” Journal of Heuristics 7(6), 519-531.

    Article  Google Scholar 

  46. Taillard, E. and Voss, S. (2002). “Popmusic - Partial Optimization Metaheuristic Under Special Intensification Conditions.” In C.C. Ribeiro and P. Hansen (eds.), Essays and Surveys in Metaheuristics. Boston: Kluwer, pp. 613-629.

    Google Scholar 

  47. Thomas, P.R. and Salhi, S. (1998). “A Tabu Search Approach for the Resource Constrained Project Scheduling Problem.” Journal of Heuristics 4, 123-139.

    Article  Google Scholar 

  48. Valls, V., Ballestin, F., and Quintanilla, M.S. (2000). “Resource-Constraint Project Scheduling: A Critical Activity Reordering Heuristic.” In PMS'2000, 7th International Workshop on Project Management and Scheduling, Osnabruck, Germany, pp. 282-283.

    Google Scholar 

  49. Valls, V., Ballestin, F., and Quintanilla, M.S. (2002). “A Hybrid Genetic Algorithm for the RCPSP with the Peak Crossover Operator.” In Proc. of 8th International Workshop on Project Management and Scheduling, PMS 2002, Valencia, Spain, pp. 368-370.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Palpant, M., Artigues, C. & Michelon, P. LSSPER: Solving the Resource-Constrained Project Scheduling Problem with Large Neighbourhood Search. Ann Oper Res 131, 237–257 (2004). https://doi.org/10.1023/B:ANOR.0000039521.26237.62

Download citation

  • resource-constrained project scheduling problem
  • large neighbourhood search