Skip to main content
Log in

Ecological interactions, management lessons and design tools in tropical agroforestry systems

  • Published:
Agroforestry Systems Aims and scope Submit manuscript

Abstract

During the 1980s, land- and labor-intensive simultaneous agroforestry systems (SAFS) were promoted in the tropics, based on the optimism on tree-crop niche differentiation and its potential for designing tree-crop mixtures using high tree-densities. In the 1990s it became clearer that although trees would yield crucial products and facilitate simultaneous growing of crops, they would also exert strong competitive effects on crops. In the meanwhile, a number of instruments for measuring the use of growth resources, exploratory and predictive models, and production assessment tools were developed to aid in understanding the opportunities and biophysical limits of SAFS. Following a review of the basic concepts of interspecific competition and facilitation between plants in general, this chapter synthesizes positive and negative effects of trees on crops, and discusses how these effects interact under different environmental resource conditions and how this imposes tradeoffs, biophysical limitations and management requirements in SAFS. The scope and limits of some of the research methods and tools, such as analytical and simulation models, that are available for assessing and predicting to a certain extent the productive outcome of SAFS are also discussed. The review brings out clearly the need for looking beyond yield performance in order to secure long-term management of farms and landscapes, by considering the environmental impacts and functions of SAFS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aggarwal P. 1995. Uncertainties in crop soil and weather inputs used in growth models: implications for simulated outputs and their applications. Agr Syst 48: 361–384.

    Article  Google Scholar 

  • Alegre J.C. and Rao M.R. 1996. Soil and water conservation by contour hedging in the humid tropics of Peru. Agric Ecosyst Environ 57: 17–25.

    Article  Google Scholar 

  • Black C.R. and Ong C.K. 2000. Utilization of light and water in tropical agriculture. Agr Forest Meteorology 104: 25–47.

    Article  Google Scholar 

  • Blackman F.F. 1905. Optima and limiting factors. Ann Bot 19: 281–295.

    Google Scholar 

  • Breman H. and Kessler J.J. 1997. The potential benefits of agroforestry in the Sahel and other semi-arid regions. Eur J Agron 7: 25–33.

    Article  Google Scholar 

  • Buresh R.J. and Tian G. 1998. Soil improvement by trees in sub-Saharan Africa. Agroforest Syst 38: 51–76.

    Article  Google Scholar 

  • Cannell M.G.R., van Noordwijk M. and Ong C.K. 1996. The central agroforestry hypothesis: the tree must acquire resources that the crop would not otherwise acquire. Agroforest Syst 34: 27–31.

    Article  Google Scholar 

  • Cannell M.G., Mobbs D., and Lawson G. 1998. Complementarity of light and water use in tropical agroforests. II. Modelled theoretical tree production and potential crop yield in arid to humid climates. Forest Ecol Manag 102: 275–282.

    Article  Google Scholar 

  • Connolly J., Goma H. and Rahim K. 2001. The information content of indicators in intercropping research. Agric Ecosyst Environ 87: 191–207.

    Article  Google Scholar 

  • Demetriades-Shah T.H., FuchsM., Kanemasu E.T. and Flitcroft I.D. 1992. Further discussion on the relationship between cumulated intercepted solar radiation and crop growth. Agr Forest Meteorol 68: 231–242.

    Article  Google Scholar 

  • De Wit C.T. 1992. Resource use efficiency in agriculture. Agr Syst 40: 125–151.

    Article  Google Scholar 

  • Fernández E.C.M., Davey C.B. and Nelson L.A. 1993. Alleycropping on acid soils in the upper amazon: mulch fertilizer and hedgerow pruning effects. pp. 77–96. In: Technologies for Sustainable Agriculture in the Tropics. ASA Special Publication 56, Madison WI, USA.

  • García-Barrios L. and García-Barrios R. 1992. La modernización de la pobreza: dinámicas de cambio técnico entre los campesinos temporaleros de México. Revista de Estudios Sociológicos (El Colegio de México) 10(29): 263–288.

    Google Scholar 

  • García-Barrios L. 2003. Plant-plant interactions in tropical agriculture. pp. 1–58. In: Vandermeer J. (ed.), Tropical Agroecosystems. CRC Press, NewYork, USA.

    Google Scholar 

  • García-Barrios L., Franco M., Mayer-Foulkes D., Urquijo-Vasquez G. and Franco-Perez J. 2001. Development and validation of a spatially explicit individual based mixed crop growth model. B Math Biol 63: 507–526.

    Article  Google Scholar 

  • Giller K. 2001. Nitrogen Fixation in Tropical Cropping Systems. (2nd edition). CAB International, Wallingford, UK, 222–250 pp.

    Google Scholar 

  • Girma H., Rao M.R. and Sithanantham S. 2000. Insect pests and beneficial arthropod populations under different hedgerow intercropping systems in semiarid Kenya. Agroforest Syst 50: 279–292.

    Article  Google Scholar 

  • Goldberg D. 1990. Components of Resource Competition in Plant Communities. pp. 27–49. In: Grace J.B. and Tilman D. (eds), Perspectives on Plant Competition. Academic Press, New York, USA.

    Google Scholar 

  • Hairiah K., van Noorwijk M., Santoso B. and Syekhfani M.S. 1992. Biomass production and root distribution of eight trees and their potential for hedgerow intercropping on an Ultisol in southern Sumatra. Agrivita 15: 54–68.

    Google Scholar 

  • Hakanson L. 1995. Optimal size of predictive models. Ecol Model 78: 195–204.

    Article  Google Scholar 

  • Harper J.L. 1990. Population Biology of Plants. Academic Press, London, UK, 892 pp.

    Google Scholar 

  • Holmgren M., Scheffer M. and Huston M. 1997. The interplay of facilitation and competition in plant communities. Ecology 78: 1966–1975.

    Article  Google Scholar 

  • Hunter A.F. and Aarssen L.W. 1988. Plants helping plants. Bio-Science 38: 34–40.

    Google Scholar 

  • ICRAF 1996. Annual Report 1995. International Centre for Research in Agroforestry, Nairobi, Kenya. 288 pp.

    Google Scholar 

  • Jose S., Gillespie A.R. and Pallardy S.G. 2004. Interspecific interactions in temperate agroforestry. (This volume).

  • Kho R.M. 2000. A general tree-environment-crop interaction equation for predictive understanding in agroforestry systems. Agric Ecosyst Environ 80: 87–100.

    Article  Google Scholar 

  • Kho R.M., Yacouba B., Yayé M., Katoré B., Moussa A., Iktam A. and Mayaki A. 2001. Separating the effects of trees on crops: The case of Faidherbia albida and millet in Niger. Agroforest Syst 52: 219–238.

    Article  Google Scholar 

  • Kiepe P. and Rao M.R. 1994. Management of agroforestry for the conservation and utilization of land and water resources. Outlook Agr 23(1): 17–25.

    Google Scholar 

  • Lefroy E.C. and Stirzaker R.J. 1999. Agroforestry for water management in southern Australia. Agroforest Syst 45: 277–302.

    Article  Google Scholar 

  • Liebman M. and Gallandt E.R. 1977. Many little hammers: ecology management of crop-weed interactions. pp. 291–343. In: Jackson L.E. (ed.), Ecology in Agriculture, Academic Press. New York.

    Google Scholar 

  • Liebman M. and Stavers C.P. 2001. Crop diversification for weed management. pp. 322–374. In: Liebman M., Mohler C.L. and Stavers C.P. (eds), Ecological Management of Agriculture Weeds. Cambridge University Press, UK.

    Google Scholar 

  • MacArthur R.H. and Levins R. 1967. The limiting similarity convergence and divergence of coexisting species. Am Nat 101: 377–378.

    Article  Google Scholar 

  • Mobbs D.C., Lawson J. and Brown T.A. 2001. HYPAR version 4.1 Model for Agroforestry Systems. Centre for Ecology and Hydrology, Edinburgh, UK. 119 pp.

    Google Scholar 

  • Monteith J.L., Scott R.K. and Unsworth M.H. (eds) 1994. Resource Capture by Crops. Nottingham University Press, Loughborough, UK. 496 pp.

    Google Scholar 

  • Nair P.K. 1998. Directions in tropical agroforestry research: past, present and future. Agroforest Syst 38: 223–245.

    Article  Google Scholar 

  • Ong C.K. 1994. Alley cropping ecological pie in the sky. Agroforest Today 6 (3): 8–10.

    Google Scholar 

  • Ong C.K. 1995. The 'dark side' of intercropping: manipulation of soil resources. pp. 45–65. In: Sinoquet H. and Cruz P. (eds), Ecophysiology of Tropical Intercropping. Institute National de la Recherche Agronomique, Paris, France.

    Google Scholar 

  • Ong C.K., Black C.R., Marshall F.M. and Corlett J.E. 1996. Principles of resource capture and utilization of light and water. pp. 73–158. In: Ong C.K. and Huxley P. (eds), Tree-Crop Interactions: A Physiological Approach. CAB international, Wallingford, UK.

    Google Scholar 

  • Ong C.K., Kho R.M. and Radersma R. 2004. Multi-species agroecosystems as models for agriculture: concepts and rules. In: van Noordwijk M., Cadisch G. and Ong C.K. (eds), Belowground Interactions in Multiple Agroecosystems. CAB International, Wallingford, UK (in press).

    Google Scholar 

  • Ong C.K. and Leakey R.R. 1999. Why tree-crop interactions in agroforestry appear at odds with tree-grass interactions in tropical savannahs? Agroforest Syst 45: 109–129.

    Article  Google Scholar 

  • Ong C.K. and Swallow B.M. 2004. Water productivity in forestry and agroforestry. In: van Noordwijk M., Cadisch G. and Ong C.K. (eds), Belowground Interactions in Multiple Agroecosystems. CAB International, Wallingford, UK (in press).

    Google Scholar 

  • Pugnaire F. and Luque M. 2001. Changes in plant interactions along a gradient of environmental stress. Oikos 93: 42–49.

    Article  Google Scholar 

  • Ranganathan R. and De Wit C.T. 1996. Mixed Cropping of annuals and woody perennials: an analytical approach to productivity and management. pp. 25–50. In: Ong C.K. and Huxley P. (eds), Tree-crop Interactions: A Physiological Approach. CAB International, Wallingford, UK.

    Google Scholar 

  • Rao M.R., Nair P.K. and Ong C.K. 1998. Biophysical interactions in tropical agroforestry systems. Agroforest Syst 38: 3–50.

    Article  Google Scholar 

  • Rao M.R., Schroth G., Williams S., Namirembe S., Schaller M., Wilson J. and Vandermeer J. 2004. Managing belowground interactions in agroecosystems. In: van Noordwijk M., Cadisch G. and Ong C.K. (eds), Belowground Interactions in Multiple Agroecosystems. CAB International, Wallingford, UK (in press).

    Google Scholar 

  • Rao M.R. and Willey R.W. 1980. Evaluation of yield stability in intercropping: studies on sorghum/pigeonpea. Exp Agr 16: 105–116.

    Google Scholar 

  • Rao M.R., Ong C.K., Pathak P. and Sharma M.M. 1992. Productivity of annual cropping and agroforestry systems. Agroforest Syst 15: 51–64.

    Article  Google Scholar 

  • Rao M.R., Singh M.P. and Day R. 2000. Insect pest problems in tropical agroforestry systems: Contributory factors and strategies for management. Agroforest Syst 50: 243–277.

    Article  Google Scholar 

  • Sanchez P.A. 1995. Science in agroforestry. Agroforest Syst 30: 5–55.

    Article  Google Scholar 

  • Schroth G., Krauss U., Gasparotto L., Duarte-Aguilar J.A. and Vohland K. 2000. Pest and diseases in agroforestry systems in the humid tropics. Agroforest Syst 50: 199–241.

    Article  Google Scholar 

  • Thevathasan N.V. and Gordon A.M. 2004. Ecology of tree intercropping systems in the North temperate region: Experience from southern Ontario, Canada. (this volume).

  • Tomich T.P., van Noordwijk M., Budidorsono S., Gillison A., Kusumanto T. Murdiyarso D., Stolle F. and Fagi A.M. 1998. Alternatives to Slash-and-Burn in Indonesia: Summary Report & Synthesis of Phase II. ASB-Indonesia Report No. 8, ICRAF Southeast Asia, Bogor, Indonesia, 139 pp.

    Google Scholar 

  • van Noordwijk M. and Ong C.K. 1999. Can the ecosystem mimic hypotheses be applied to farms in African savannahs? Agroforest Syst 45: 131–158.

    Article  Google Scholar 

  • van Noordwijk M., Cadisch G. and Ong C.K. 2004. Challenges for the next decade of research on belowground interactions in tropical agro-ecosystems: from plot to landscape scale. In: van Noordwijk M., Cadisch G. and Ong C.K. (eds), Belowground Interactions in Multiple Agroecosystems. CAB International, Wallingford, UK (in press).

    Google Scholar 

  • van Noordwijk M. and Lusiana B. 1999.WaNulCAS a model of water nutrient and light capture in agroforestry systems. Agroforest Syst 43: 217–242.

    Article  Google Scholar 

  • van Noordwijk M. 1996. Mulch and shade model for optimum alley cropping design depending on soil fertility. pp. 51–72. In: Ong C.K. and Huxley P. (eds), Tree-Crop Interactions: A Physiological Approach. CAB international, Wallingford, UK.

    Google Scholar 

  • Vandermeer J. 1998. Maximizing crop yields in alley crops. Agroforest Syst 40: 199–206.

    Article  Google Scholar 

  • Vandermeer J. 1989. The Ecology of Intercropping. Cambridge University Press Cambridge, UK, 248 pp.

    Google Scholar 

  • Willey R.W. and Heath S.B. 1969. The quantitative relation between plant population and crop yield. Adv Agron 21: 281–321.

    Article  Google Scholar 

  • Williams A. and McCarthy B. 2001. A new index of interspecific competition for replacement and additive designs. Ecol Res 16: 29–40.

    Article  Google Scholar 

  • Young A. 1997. Agroforestry for Soil Management 2nd edition, CAB International, Wallingford, UK, 320 pp.

    Google Scholar 

  • Young A. 1998. Land Resources: Now and For the Future. Cambridge University Press, UK, 319 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

García-Barrios, L., Ong, C. Ecological interactions, management lessons and design tools in tropical agroforestry systems. Agroforestry Systems 61, 221–236 (2004). https://doi.org/10.1023/B:AGFO.0000029001.81701.f0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:AGFO.0000029001.81701.f0

Navigation