Skip to main content
Log in

A split-root apparatus for examining the effects of hydraulic lift by trees on the water status of neighbouring crops

  • Published:
Agroforestry Systems Aims and scope Submit manuscript

Abstract

We describe a split-root system for examining the effects of hydraulic lift by trees on crop growth. In this system, upper lateral tree roots were grown in a container set on the ground through which the taproot of the tree could penetrate into the moist soil below. The container, with a radius of 0.5 m and a height of 0.20 m, consisted of two compartments divided by a waterproof barrier. A markhamia tree (Markhamia lutea (Benth.) Schumann) and upland rice (Oryza sativa (L.)) plants were planted in one compartment, with only rice plants planted in the other compartment. Irrigation of the container was ceased at the start of the experiment. The stomatal conductance of the rice plants in the associated side, in which both trees and rice plants were grown, declined more rapidly during the first drying period than in the rice-only compartment, suggesting that there was competition for water between the tree and the crop plants. However, during the later drying period, the rice plants in the associated side were green and viable, while those in the rice-only side became desiccated. Rice roots were seen intermingling with tree roots, and the soil water content in the associated site tended to be higher than in the rice-only side. It is likely that hydraulic lift occurred in the associated side and that water that had been transferred to the surface roots was released into the soil, enabling the rice plants in this compartment to remain viable. This novel system is useful for examination of the effects of hydraulic lift by trees on the growth of neighbouring crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baker J.M. and van Bavel C.H.M. 1986. Resistance of plant roots to water loss. Agronomy Journal 78: 641–644.

    Article  Google Scholar 

  • Baker J.M. and van Bavel C.H.M. 1988. Water transfer through cotton plants connecting soil regions of differing water potential. Agronomy Journal 80: 993–997.

    Article  Google Scholar 

  • Baldy C. and Stigter C.J. 1997. Agrometeorology of multiple cropping in warm climates. Science Publisheres Inc. pp. 237.

  • Bormann F.H. 1957. Moisture transfer between plants through intertwined roots systems. Plant Physiology 32: 48–55.

    Article  PubMed  CAS  Google Scholar 

  • Brooks J.R., Meinzer F.C., Coulombe R. and Gregg J. 2002. Hydraulic redistribution of soil water during summer drought in two contrasting Pacific Northwest coniferous forests. Tree Physiology 22: 1107–1117.

    PubMed  Google Scholar 

  • Burgess S.S.O., Adams M.A., Turner N.C. and Ong C.K. 1998. The redistribution of soil water by tree root systems. Oecologia 115: 306–311.

    Article  Google Scholar 

  • Caldwell M.M., Dawson T.E. and Richards J.H. 1998. Hydraulic lift: consequences of water efflux from the roots of plants. Oecologia 113: 151–161.

    Article  Google Scholar 

  • Jackson R.B., Sperry J.S. and Dawson T.E. 2000. Root water uptake and transport: using physiological processes in global predictions. Trends in Plant Science 5: 482–488.

    Article  PubMed  CAS  Google Scholar 

  • Nadezhdina N. and Čermák J. 2003. Instrumental methods for studies of structure and function of root systems of large trees. Journal of Experimental Botany 54: 1511–1521.

    Article  PubMed  CAS  Google Scholar 

  • Ong C.K., Corlett J.E., Singh R.P. and Black C.R. 1991. Above and below ground interactions in agroforestry system. Forest Ecology and Management 45: 45–57.

    Article  Google Scholar 

  • Ong C.K., Black C.R., Marshall F.M. and Corlett J.E. 1996. Principles of resource capture and utilization of light and water. In: Ong C.K. and Huxley P. (eds), Tree-Crop Interactions: A Physical Approach, pp. 73–158. CAB International, Wallingford, UK.

    Google Scholar 

  • Rao M.R., Nair P.K.R. and Ong C.K. 1998. Biophysical interactions in tropical agroforestry systems. Agroforestry Systems 38: 3–50.

    Article  Google Scholar 

  • Richards J.H. and Caldwell M.M. 1987. Hydraulic lift: substantial nocturnal water transport between soil layers by Artemisia tridentata roots. Oecologia 73: 486–489.

    Article  Google Scholar 

  • Sakuratani T. 1981. A heat balance method for measuring water flux in the stem of intact plants. Journal of Agricultural Meteorology 37: 9–17.

    Google Scholar 

  • Sakuratani T. 1984. Improvement of the probe for measuring water flow rate in intact plants with the stem heat balance method. Journal of Agricultural Meteorology 40: 273–277.

    Google Scholar 

  • Sakuratani T., Aoe T. and Higuchi H. 1999. Reverse flow in roots of Sesbania rostrata measured using the constant power heat balance method. Plant, Cell and Environment 22: 1153–1160.

    Article  Google Scholar 

  • Schulze E.-D., Caldwell M.M., Canadell J., Mooney H.A., Jackson R.B., Parson D., Scholes R., Sala O.E. and Trimborn P. 1998. Downward flux of water through roots (i.e., inverse hydraulic lift) in dry Kalahari sands. Oecologia 115: 460–462.

    Article  Google Scholar 

  • Smith D.M., Jackson N.A., Roberts J.M. and Ong C.K. 1999. Reverse flow of sap in tree roots and downward siphoning of water by Grevillea robusta. Functional Ecology 13: 256–264.

    Article  Google Scholar 

  • Steinberg S.L., van Bavel C.H.M. and McFarland M.J. 1990. Improved sap flow gauge for woody and herbaceous plants. Agronomy Journal 82: 851–854.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hirota, I., Sakuratani, T., Sato, T. et al. A split-root apparatus for examining the effects of hydraulic lift by trees on the water status of neighbouring crops. Agroforestry Systems 60, 181–187 (2004). https://doi.org/10.1023/B:AGFO.0000013293.77907.64

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:AGFO.0000013293.77907.64

Navigation