Skip to main content
Log in

Quantitative Angiogenesis Assays in vivo – A Review

  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

The development of agents that target tumour vasculature is ultimately dependent on the availability of appropriate preclinical screening assays. Several quantitative angiogenesis assays exist, each with its own unique characteristics and disadvantages. In this review we discuss some of the commonly used assays, their methodological pitfalls and current use. The corneal micropocket and the CAM assay are well established. However, the matrix-implant assays have the potential advantage of replicating the hypoxic tumour microenvironment, thus making them suitable for the study of tumour angiogenesis. The ideal quantitative angiogenesis assay does not exist and the use of two complimentary quantitative assays, such as a matrix implant assay and a microcirculatory preparation like the CAM or corneal micropocket assay, provides the best compromise. Newer models like the hollow-fibre assay are being developed and older ones refined. Assay systems should reflect distinct disease processes. Thus it is appropriate to develop assays that study exclusively pro- or anti-angiogenic compounds or anti-vascular agents. Criticisms of currently available screening systems are that the predictive value of current screening systems remains to be established as anti-angiogenic agents are still in clinical development. Anti-angiogenic agents are likely to be most effective as chronic therapy for remission maintenance in the metastatic setting or as adjuvant therapy in patients at high risk of relapse, an important clinical aspect not addressed in animal models of tumour angiogenesis. Histological analysis still provides the most detailed information on in vivo angiogenesis. However, angiogenesis is a dynamic process and assays that permit continuous monitoring of the angiogenic response and provide information on the physiological characteristics of new vessels will be distinctly advantageous over older systems. The development of non-invasive techniques for quantitation of angiogenesis will greatly facilitate this process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jain RK et al. Quantitative angiogenesis assays: Progress and problems. Nat Med 1997; 3: 1203–8.

    Google Scholar 

  2. Hansen-Smith FM. Capillary network patterning during angiogenesis. Clin Exp Pharmacol Physiol 2000; 27: 830–5.

    Google Scholar 

  3. Patan S, Haenni B, Burri PH. Evidence for intussusceptive capillary growth in the chicken chorio-allantoic membrane (CAM). Anat Embryol (Berl) 1993; 187 (2): 121–30.

    Google Scholar 

  4. Djonov V, Baum O, Burri PH. Vascular remodeling by intussusceptive angiogenesis. Cell Tissue Res 2003; 314(1): 107–17.

    Google Scholar 

  5. Algire GH. An adaptation of the transparent chamber technique to the mouse.J Natl Cancer Inst USA 1943; 4: 1–11.

    Google Scholar 

  6. Algire GH. Chalkley HW. Vascular reactions of the normal and malignant tissues in vivo. 1. Vascular reactions of mice to wounds and to normal and neoplastic transplants. J Natl Cancer Inst USA 1945; 6: 73–75.

    Google Scholar 

  7. Endrich B et al. Technical report-a new chamber technique for microvascular studies in unanesthetized hamsters. Res Exp Med (Berl) 1980; 177 (2): 125–34.

    Google Scholar 

  8. Leunig M et al. Angiogenesis, microvascular architecture, microhemodynamics, and interstitial fluid pressure during early growth of human adenocarcinoma LS174T in SCID mice. Cancer Res 1992; 52 (23): 6553–60.

    Google Scholar 

  9. Dellian M et al. Quantitation and physiological characterization of angiogenic vessels in mice: Effect of basic fibroblast growth factor, vascular endothelial growth factor/vascular permeability factor, and host microenvironment. Am J Pathol 1996; 149 (1): 59–71.

    Google Scholar 

  10. Sewell IA. Studies of the microcirculation using transparent tissue observation chambers inserted in the hamster cheek pouch. J Anat 1966; 100 (4): 839–56.

    Google Scholar 

  11. Li CY et al. Initial stages of tumor cell-induced angiogenesis: evaluation via skin window chambers in rodent models. J Natl Cancer Inst 2000; 92 (2): 143–7.

    Google Scholar 

  12. Pahernik S et al. Orthogonal polarisation spectral imaging as a new tool for the assessment of antivascular tumour treatment in vivo: A validation study. Br J Cancer 2002; 86 (10): 1622–7.

    Google Scholar 

  13. Gelaw B, Levin S. Wound-induced angiogenesis and its pharmacologic inhibition in a murine model. Surgery 2001; 130 (3): 497–501.

    Google Scholar 

  14. Vajkoczy P et al. Measuring VEGF-Flk-1 activity and consequences of VEGF-Flk-1 targeting in vivo using intravital microscopy: Clinical applications. Oncologist 2000; 5 (Suppl 1): 16–9.

    Google Scholar 

  15. Hoshida T et al. Gene therapy for pancreatic cancer using an adenovirus vector encoding soluble flt-1 vascular endothelial growth factor receptor. Pancreas 2002; 25 (2): 111–21.

    Google Scholar 

  16. Hansen-Algenstaedt N et al. Tumor oxygenation in hormonedependent tumors during vascular endothelial growth factor receptor-2 blockade, hormone ablation, and chemotherapy. Cancer Res 2000; 60 (16): 4556–60.

    Google Scholar 

  17. Selye H. On the mechanism through which hydrocortisone affects the resistance of tissues to injury; An experimental study with the granuloma pouch technique. J Am Med Assoc 1953; 152 (13): 1207–13.

    Google Scholar 

  18. Colville-Nash PR et al. The pharmacological modulation of angiogenesis in chronic granulomatous inflammation. J Pharmacol Exp Ther 1995; 274 (3): 1463–72.

    Google Scholar 

  19. Funahashi Y et al. Establishment of a quantitative mouse dorsal air sac model and its application to evaluate a new angiogenesis inhibitor. Oncol Res 1999; 11 (7): 319–29.

    Google Scholar 

  20. Sandison JC. A new method for the microscopic study of living growing tissues by the introduction of a transparent chamber in the rabbit's ear. Anat Rec 1924; 24: 281–7.

    Google Scholar 

  21. Zawicki DF et al. Dynamics of neovascularization in normal tissue. Microvasc Res 1981; 21 (1): 27–47.

    Google Scholar 

  22. Dudar TE, Jain RK, Microcirculatory flow changes during tissue growth. Microvasc Res 1983; 25 (1): 1–21.

    Google Scholar 

  23. Gerlowski LE, Jain RK, Microvascular permeability of normal and neoplastic tissues. Microvasc Res 1986; 31 (3): 288–305.

    Google Scholar 

  24. Ichioka S et al. Effects of shear stress on wound-healing angiogenesis in the rabbit ear chamber. J Surg Res 1997; 72 (1): 29–35.

    Google Scholar 

  25. Tomizawa Y et al. Macroscopic sequential pictures of angiogenesis in a rabbit ear chamber. J Invest Surg 2002; 15 (5): 269–74.

    Google Scholar 

  26. Hashimoto I et al. Angiostatic effects of corticosteroid on wound healing of the rabbit ear. J Med Invest 2002; 49 (1-2): 61–6.

    Google Scholar 

  27. Klintworth GK. The hamster cheek pouch: An experimental model of corneal vascularization. Am J Pathol 1973; 73 (3): 691–710.

    Google Scholar 

  28. Schreiber AB, Winkler ME, Derynck R. Transforming growth factor-a: A more potent angiogenic mediator than epidermal growth factor. Science 1986; 232 (4755): 1250–3.

    Google Scholar 

  29. Norrby K, Jakobsson A, Sorbo J. Quantitative angiogenesis in spreads of intact rat mesenteric windows. Microvasc Res 1990; 39 (3): 341–8.

    Google Scholar 

  30. Norrby K. Basic fibroblast growth factor and de novo mammalian angiogenesis. Microvasc Res 1994; 48 (1): 96–113.

    Google Scholar 

  31. Folkman J. Proceedings: Tumor angiogenesis factor. Cancer Res 1974; 34 (8): 2109–13.

    Google Scholar 

  32. Auerbach R et al. A simple procedure for the long-term cultivation of chicken embryos. Dev Biol 1974; 41 (2): 391–4.

    Google Scholar 

  33. Ausprunk DH, Folkman J. Migration and proliferation of endothelial cells in preformed and newly formed blood vessels during tumor angiogenesis. Microvasc Res 1977; 14 (1): 53–65.

    Google Scholar 

  34. Knighton D et al. Avascular and vascular phases of tumour growth in the chick embryo. Br J Cancer 1977; 35 (3): 347–56.

    Google Scholar 

  35. Nguyen M, Shing Y, Folkman J. Quantitation of angiogenesis and antiangiogenesis in the chick embryo chorioallantoic membrane. Microvasc Res 1994; 47 (1): 31–40.

    Google Scholar 

  36. Ribatti D et al. Chorioallantoic membrane capillary bed: A useful target for studying angiogenesis and anti-angiogenesis in vivo. Anat Rec 2001; 264 (4): 317–24.

    Google Scholar 

  37. Ausprunk DH, Knighton DR, Folkman J. Differentiation of vascular endothelium in the chick chorioallantois: A structural and autoradiographic study. Dev Biol 1974; 38 (2): 237–48.

    Google Scholar 

  38. Schlatter P et al. Quantitative study of intussusceptive capillary growth in the chorioallantoic membrane (CAM) of the chicken embryo. Microvasc Res 1997; 54 (1): 65–73.

    Google Scholar 

  39. Ausprunk DH. Distribution of hyaluronic acid and sulfated glycosaminoglycans during blood-vessel development in the chick chorioallantoic membrane. Am J Anat 1986; 177 (3): 313–31.

    Google Scholar 

  40. Ribatti D et al. Role of basic fibroblast growth factor in the formation of the capillary plexus in the chick embryo chorioallantoic membrane. An in situ hybridization, immunohistochemical and ultrastructural study. J Submicrosc Cytol Pathol 1998; 30 (1): 127–36.

    Google Scholar 

  41. Folkman J. Toward an understanding of angiogenesis: Search and discovery. Perspect Biol Med 1985; 29 (1): 10–36.

    Google Scholar 

  42. Folkman J, Klagsbrun M. Angiogenic factors. Science 1987; 235 (4787): 442–7.

    Google Scholar 

  43. Vu MT et al. An evaluation of methods to quantitate the chick chorioallantoic membrane assay in angiogenesis. Lab Invest 1985; 53 (4): 499–508.

    Google Scholar 

  44. Folkman J, Cotran R. Relation of vascular proliferation to tumor growth. Int Rev Exp Pathol 1976; 16: 207–48.

    Google Scholar 

  45. Form DM, Auerbach R. PGE2 and angiogenesis. Proc Soc Exp Biol Med 1983; 172 (2): 214–8.

    Google Scholar 

  46. Dusseau JW, Hutchins PM, Malbasa DS. Stimulation of angiogenesis by adenosine on the chick chorioallantoic membrane. Circ Res 1986; 59 (2): 163–70.

    Google Scholar 

  47. Harris-Hooker SA et al. Neovascular responses induced by cultured aortic endothelial cells. J Cell Physiol 1983; 114 (3): 302–10.

    Google Scholar 

  48. Voss K, Jacob W, Roth K. A new image analysis method for the quantification of neovascularization. Exp Pathol 1984; 26 (3): 155–61.

    Google Scholar 

  49. Strick DM et al. Morphometric measurements of chorioallantoic membrane vascularity: Effects of hypoxia and hyperoxia. Am J Physiol 1991; 260 (4 Pt 2): H1385–9.

    Google Scholar 

  50. Maragoudakis ME et al. Validation of collagenous protein synthesis as an index for angiogenesis with the use of morphological methods. Microvasc Res 1995; 50 (2): 215–22.

    Google Scholar 

  51. Ribatti D et al. New model for the study of angiogenesis and antiangiogenesis in the chick embryo chorioallantoic membrane: The gelatin sponge/chorioallantoic membrane assay. J Vasc Res 1997; 34 (6): 455–63.

    Google Scholar 

  52. Knighton DR, Fiegel VD, Phillips GD. The assay of angiogenesis. Prog Clin Biol Res 1991; 365: 291–9.

    Google Scholar 

  53. Rosenbruch M. Granulation tissue in the chick embryo yolk sac blood vessel system. J Comp Pathol 1989; 101 (4): 363–73.

    Google Scholar 

  54. Jakob W et al. The chick embryo choriallantoic membrane as a bioassay for angiogenesis factors: Reactions induced by carrier materials. Exp Pathol (Jena) 1978; 15 (5): 241–9.

    Google Scholar 

  55. Wilting J, Christ B, Weich HA. The effects of growth factors on the day 13 chorioallantoic membrane (CAM): A study of VEGF165 and PDGF-BB. Anat Embryol (Berl) 1992; 186 (3): 251–7.

    Google Scholar 

  56. Auerbach R, Auerbach W, Polakowski I. Assays for angiogenesis: A review. Pharmacol Ther 1991; 51 (1): 1–11.

    Google Scholar 

  57. Barnhill RL, Ryan TJ. Biochemical modulation of angiogenesis in the chorioallantoic membrane of the chick embryo. J Invest Dermatol 1983; 81 (6): 485–8.

    Google Scholar 

  58. Lilli C et al. Effects of transforming growth factor-beta1 and tumour necrosis factor-alpha on cultured fibroblasts from skin fibroma as modulated by toremifene. Int J Cancer 2002; 98 (6): 824–32.

    Google Scholar 

  59. Crum R, Szabo S, Folkman J.A new class of steroids inhibits angiogenesis in the presence of heparin or a heparin fragment. Science 1985; 230 (4732): 1375–8.

    Google Scholar 

  60. Ingber DE, Madri JA, Folkman J. A possible mechanism for inhibition of angiogenesis by angiostatic steroids: Induction of capillary basement membrane dissolution. Endocrinology 1986; 119 (4): 1768–75.

    Google Scholar 

  61. Wilks JW et al. Inhibition of angiogenesis with combination treatments of angiostatic steroids and suramin. Int J Radiat Biol 1991; 60 (1-2): 73–7.

    Google Scholar 

  62. Tanaka NG et al. Antitumor effects of an anti-angiogenic polysaccharide from an Arthrobacter species with or without a steroid. Cancer Res 1989; 49 (23): 6727–30.

    Google Scholar 

  63. Xiao F et al. A gene therapy for cancer based on the angiogenesis inhibitor, vasostatin. Gene Ther 2002; 9 (18): 1207–13.

    Google Scholar 

  64. Brooks PC, Clark RA, Cheresh DA. Requirement of vascular integrin alpha v beta 3 for angiogenesis. Science 1994; 264 (5158): 569–71.

    Google Scholar 

  65. Gimbrone Jr MA et al. Tumor dormancy in vivo by prevention of neovascularization. J Exp Med 1972; 136 (2): 261–76.

    Google Scholar 

  66. Sholley MM et al. Mechanisms of neovascularization. Vascular sprouting can occur without proliferation of endothelial cells. Lab Invest 1984; 51 (6): 624–34.

    Google Scholar 

  67. Greene HSN. The heterologous transplantation of embryonic mammalian tissues. Cancer Res 1943; 3: 809–822.

    Google Scholar 

  68. Gimbrone Jr MA et al. Tumor angiogenesis: Iris neovascularization at a distance from experimental intraocular tumors. J Natl Cancer Inst 1973; 50 (1): 219–28.

    Google Scholar 

  69. Gimbrone Jr MA et al. Tumor growth and neovascularization: An experimental model using the rabbit cornea. J Natl Cancer Inst 1974; 52 (2): 413–27.

    Google Scholar 

  70. Ziche M, Alessandri G, Gullino PM. Gangliosides promote the angiogenic response. Lab Invest 1989; 61 (6): 629-34.

    Google Scholar 

  71. Ziche M et al. Nitric oxide mediates angiogenesis in vivo and endothelial cell growth and migration in vitro promoted by substance P. J Clin Invest 1994; 94 (5): 2036–44.

    Google Scholar 

  72. Ziche M et al. Placenta growth factor-1 is chemotactic, mitogenic, and angiogenic. Lab Invest 1997; 76 (4): 517–31.

    Google Scholar 

  73. Ziche M et al. Nitric oxide synthase lies downstream from vascular endothelial growth factor-induced but not basic fibroblast growth factor-induced angiogenesis. J Clin Invest 1997; 99 (11): 2625–34.

    Google Scholar 

  74. Proia AD et al. Quantitation of corneal neovascularization using computerized image analysis. Lab Invest 1988; 58 (4): 473–9.

    Google Scholar 

  75. Conrad TJ et al. In vivo measurement of corneal angiogenesis with video data acquisition and computerized image analysis. Lab Invest 1994; 70 (3): 426–34.

    Google Scholar 

  76. Polverini PJ et al. Activated macrophages induce vascular proliferation. Nature 1977; 269 (5631): 804–6.

    Google Scholar 

  77. Muthukkaruppan V, Auerbach R. Angiogenesis in the mouse cornea. Science 1979; 205 (4413): 1416–8.

    Google Scholar 

  78. Kenyon BM et al. A model of angiogenesis in the mouse cornea. Invest Ophthalmol Vis Sci 1996; 37 (8): 1625–32.

    Google Scholar 

  79. Muthukkaruppan VR, Kubai L, Auerbach R. Tumor-induced neovascularization in the mouse eye. J Natl Cancer Inst 1982; 69 (3): 699–708.

    Google Scholar 

  80. Chen C et al. A strategy to discover circulating angiogenesis inhibitors generated by human tumors. Cancer Res 1995; 55 (19): 4230–3.

    Google Scholar 

  81. Kenyon BM, Browne F, D'Amato RJ. Effects of thalidomide and related metabolites in a mouse corneal model of neovascularization. Exp Eye Res 1997; 64 (6): 971–8.

    Google Scholar 

  82. Teicher BA et al. Antiangiogenic effects of a protein kinase Cbetaselective small molecule. Cancer Chemother Pharmacol 2002; 49 (1): 69–77.

    Google Scholar 

  83. Auerbach R et al. Angiogenesis assays: Problems and pitfalls. Cancer Metast Rev 2000; 19 (1-2): 167–72.

    Google Scholar 

  84. Langer R, Murray J. Angiogenesis inhibitors and their delivery systems. Appl Biochem Biotechnol 1983; 8 (1): 9–24.

    Google Scholar 

  85. Andrade SP, Fan TP, Lewis GP. Quantitative in-vivo studies on angiogenesis in a rat sponge model. Br J Exp Pathol 1987; 68 (6): 755–66.

    Google Scholar 

  86. Hu DE et al. Correlation of 133Xe clearance, blood flow and histology in the rat sponge model for angiogenesis. Further studies with angiogenic modifiers. Lab Invest 1995; 72 (5): 601–10.

    Google Scholar 

  87. Pesenti E et al. Suramin prevents neovascularisation and tumour growth through blocking of basic fibroblast growth factor activity. Br J Cancer 1992; 66 (2): 367–72.

    Google Scholar 

  88. Buckley A et al. Sustained release of epidermal growth factor accelerates wound repair. Proc Natl Acad Sci USA 1985; 82 (21): 7340–4.

    Google Scholar 

  89. Andrade SP. Sponge implant model of angiogenesis. In MURRAY JC (ed.) Meth Molecular Med; Angiogenesis Protocols, Vol 46.New Jersey: Humana Press 2001; 77–86.

  90. Andrade SP et al. Effects of tumour cells on angiogenesis and vasoconstrictor responses in sponge implants in mice. Br J Cancer 1992; 66 (5): 821–6.

    Google Scholar 

  91. Kusaka M et al. Potent anti-angiogenic action of AGM-1470: Comparison to the fumagillin parent. Biochem Biophys Res Commun 1991; 174 (3): 1070–6.

    Google Scholar 

  92. Walsh DA et al. Innervation and neurokinin receptors during angiogenesis in the rat sponge granuloma. Histochem J 1996; 28 (11): 759–69.

    Google Scholar 

  93. Kim CD et al. Antiangiogenic effect of KR31372 in rat sponge implant model. J Pharmacol Exp Ther 2001; 296 (3): 1085–90.

    Google Scholar 

  94. Andrade SP et al. Effects of platelet activating factor (PAF) and other vasoconstrictors on a model of angiogenesis in the mouse. Int J Exp Pathol 1992; 73 (4): 503–13.

    Google Scholar 

  95. Andrade SP et al. Sponge-induced angiogenesis in mice and the pharmacological reactivity of the neovasculature quantitated by a fluorimetric method. Microvasc Res 1997; 54 (3): 253–61.

    Google Scholar 

  96. Wang H et al. Rat sponge implant model: A new system for evaluating angiogenic gene transfer. Int J Mol Med 2000;6 (6): 645–53.

    Google Scholar 

  97. Fajardo LF et al. The disc angiogenesis system. Lab Invest 1988; 58 (6): 718–24.

    Google Scholar 

  98. Fajardo LF et al. Dual role of tumor necrosis factor-alpha in angiogenesis. Am J Pathol 1992; 140 (3): 539–44.

    Google Scholar 

  99. Kowalski J et al. Characterization and applications of the disc angiogenesis system. Exp Mol Pathol 1992; 56 (1): 1–19.

    Google Scholar 

  100. Clements MK et al. Antiangiogenic potential of camptothecin and topotecan. Cancer Chemother Pharmacol 1999; 44 (5): 411–6.

    Google Scholar 

  101. Nelson MJ, Conley FK, Fajardo LF. Application of the disc angiogenesis system to tumor-induced neovascularization. Exp Mol Pathol 1993; 58 (2): 105–13.

    Google Scholar 

  102. Kleinman HK et al. Role of basement membranes in cell differentiation. Ann N Y Acad Sci 1987; 513: 134–45.

    Google Scholar 

  103. Kubota Y et al. Role of laminin and basement membrane in the morphological differentiation of human endothelial cells into capillary-like structures. J Cell Biol 1988; 107 (4): 1589–98.

    Google Scholar 

  104. Passaniti A et al. A simple, quantitative method for assessing angiogenesis and antiangiogenic agents using reconstituted basement membrane, heparin, and fibroblast growth factor. Lab Invest 1992; 67 (4): 519–28.

    Google Scholar 

  105. Grant DS et al. Scatter factor induces blood vessel formation in vivo. Proc Natl Acad Sci USA 1993; 90 (5): 1937–41.

    Google Scholar 

  106. Prewett M et al. Antivascular endothelial growth factor receptor (fetal liver kinase 1) monoclonal antibody inhibits tumor angiogenesis and growth of several mouse and human tumors. Cancer Res 1999; 59 (20): 5209–18.

    Google Scholar 

  107. Sweeney CJ et al. The antiangiogenic property of docetaxel is synergistic with a recombinant humanized monoclonal antibody against vascular endothelial growth factor or 2-methoxyestradiol but antagonized by endothelial growth factors. Cancer Res 2001;61 (8): 3369–72.

    Google Scholar 

  108. Hotchkiss KA et al. Inhibition of endothelial cell function in vitro and angiogenesis in vivo by docetaxel (Taxotere): Association with impaired repositioning of the microtubule organizing center. Mol Cancer Ther 2002; 1 (13): 1191–200.

    Google Scholar 

  109. Zhang L et al. Combined anti-fetal liver kinase 1 monoclonal antibody and continuous low-dose doxorubicin inhibits angiogenesis and growth of human soft tissue sarcoma xenografts by induction of endothelial cell apoptosis. Cancer Res 2002; 62 (7): 2034–42.

    Google Scholar 

  110. Akhtar N, Dickerson EB, Auerbach R. The sponge/Matrigel angiogenesis assay. Angiogenesis 2002; 5 (1-2): 75–80.

    Google Scholar 

  111. Bodmeier R, Paeratakul O. Spherical agglomerates of waterinsoluble drugs. J Pharm Sci 1989; 78 (11): 964–7.

    Google Scholar 

  112. Plunkett ML, Hailey JA. An in vivo quantitative angiogenesis model using tumor cells entrapped in alginate. Lab Invest 1990; 62 (4): 510–7.

    Google Scholar 

  113. Robertson NE et al. A quantitative in vivo mouse model used to assay inhibitors of tumor-induced angiogenesis. Cancer Res 1991; 51 (4): 1339–44.

    Google Scholar 

  114. Hoffmann J et al. A highly sensitive model for quantification of in vivo tumor angiogenesis induced by alginate-encapsulated tumor cells. Cancer Res 1997; 57 (17): 3847–51.

    Google Scholar 

  115. Borud LJ et al. The fasciovascular flap: A new vehicle for islet transplantation. Cell Transplant 1994; 3 (6): 509–14.

    Google Scholar 

  116. Ko C et al. In vitro slow release profile of endothelial cell growth factor immobilized within calcium alginate microbeads. Artif Cells Blood Substit Immobil Biotechnol 1995; 23 (2): 143–51.

    Google Scholar 

  117. Schirner M et al. Antiangiogenic chemotherapeutic agents: Characterization in comparison to their tumor growth inhibition in human renal cell carcinoma models. Clin Cancer Res 1998; 4 (5): 1331–6.

    Google Scholar 

  118. Anderson LF. New drug screen assay uses fewer mice, while cutting costs. J Natl Cancer Inst 1995; 87 (16): 1213–4.

    Google Scholar 

  119. Casciari JJ et al. Growth and chemotherapeutic response of cells in a hollow-fiber in vitro solid tumor model. J Natl Cancer Inst 1994; 86 (24): 1846–52.

    Google Scholar 

  120. Hollingshead MG et al. In vivo cultivation of tumor cells in hollow fibers. Life Sci 1995; 57 (2): 131–41.

    Google Scholar 

  121. Johnson JI et al. Relationships between drug activity in NCI preclinical in vitro and in vivo models and early clinical trials. Br J Cancer 2001; 84 (10): 1424–31.

    Google Scholar 

  122. Phillips RM et al. Angiogenesis in the hollow fiber tumor model influences drug delivery to tumor cells: Implications for anticancer drug screening programs. Cancer Res 1998; 58 (23): 5263–6.

    Google Scholar 

  123. Phillips RM, Bibby MC. Hollow fibre assay for tumour angiogenesis. In Murray JC. (ed.): Meth Mole Med Angiogenesis Protocols, Vol 46. New Jersey: Humana Press 2001; 87–93.

  124. McDonald DM, Choyke PL. Imaging of angiogenesis: From microscope to clinic. Nat Med 2003; 9 (6): 713–25.

    Google Scholar 

  125. Hasan J, Byers R, Jayson GC. Intra-tumoural microvessel density in human solid tumours. Br J Cancer 2002; 86 (10): 1566–77.

    Google Scholar 

  126. Hlatky L, Hahnfeldt P, Folkman J. Clinical application of antiangiogenic therapy: Microvessel density, what it does and doesn't tell us. J Natl Cancer Inst 2002; 94 (12): 883–93.

    Google Scholar 

  127. Vermeulen PB et al. Quantification of angiogenesis in solid human tumours: An international consensus on the methodology and criteria of evaluation. Eur J Cancer 1996; 32A (14): 2474–84.

    Google Scholar 

  128. Brekken RA et al. Vascular endothelial growth factor as a marker of tumor endothelium. Cancer Res 1998; 58 (9): 1952–9.

    Google Scholar 

  129. Duff SE et al. CD105 is important for angiogenesis: Evidence and potential applications. FASEB J 2003; 17 (9): 984–92.

    Google Scholar 

  130. Beebe JS et al. Pharmacological characterization of CP-547,632, a novel vascular endothelial growth factor receptor-2 tyrosine Angiogenesis assays in vivo 15 kinase inhibitor for cancer therapy. Cancer Res 2003; 63 (21): 7301–9.

    Google Scholar 

  131. Polakowski IJ et al. A ribonuclease inhibitor expresses antiangiogenic properties and leads to reduced tumor growth in mice. Am J Pathol 1993; 143 (2): 507–17.

    Google Scholar 

  132. Kwon HJ et al. Histone deacetylase inhibitor FK228 inhibits tumor angiogenesis. Int J Cancer 2002; 97 (3): 290–6.

    Google Scholar 

  133. Blebea J et al. Differential effects of vascular growth factors on arterial and venous angiogenesis. J Vasc Surg 2002; 35 (3): 532–8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jurjees Hasan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hasan, J., Shnyder, S., Bibby, M. et al. Quantitative Angiogenesis Assays in vivo – A Review. Angiogenesis 7, 1–16 (2004). https://doi.org/10.1023/B:AGEN.0000037338.51851.d1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:AGEN.0000037338.51851.d1

Navigation