Skip to main content
Log in

The Role of the Fibrinolytic System in Corneal Angiogenesis

  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

The plasminogen activation system has been implicated in angiogenesis and angiogenesis-dependent diseases such as cancer, atherosclerosis and ocular diseases. The identification and development of inhibitors of angiogenesis offer new possibilities for the treatment of these diseases. To clarify the role of proteins involved in the regulation of fibrinolysis during corneal angiogenesis, we have studied corneal vessel formation in mice deficient for urokinase-type plasminogen activator (uPA), tissue-type plasminogen activator (tPA), plasminogen, plasminogen activator inhibitor-1 (PAI-1) and thrombin-activatable fibrinolysis inhibitor (TAFI). Our results corroborate earlier findings that angiogenesis in the mouse cornea is dependent on PAI-1 and plasminogen. The absence of tPA, uPA or TAFI did not affect the formation of new vessels in the cornea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature 2000; 407: 249–57.

    Article  PubMed  CAS  Google Scholar 

  2. Chang JH, Gabison EE, Kato T, Azar DT. Corneal neovascularisation. Curr Opin Ophthalmol 2001; 12: 242–9.

    Article  PubMed  CAS  Google Scholar 

  3. Stetler-Stevenson WG. Matrix metalloproteinases in angiogenesis: A moving target for therapeutic intervention. J Clin Invest 1999; 103: 1237–41.

    PubMed  CAS  Google Scholar 

  4. Pepper MS. Extracellular proteolysis and angiogenesis. Thromb Haemost 2001; 86: 346–55.

    PubMed  CAS  Google Scholar 

  5. Pepper MS, Ferrara N, Orci L, Montesano R. Vascular endothelial growth factor (VEGF) induces plasminogen activators and plasminogen activator inhibitor-1 in microvascular endothelial cells. Biochem Biophys Res Commun 1991; 181: 902–6.

    Article  PubMed  CAS  Google Scholar 

  6. Pepper MS, Wasi S, Ferrara N et al. In vitro angiogenic and proteolytic properties of bovine lymphatic endothelial cells. Exp Cell Res 1994; 210: 298–305.

    Article  PubMed  CAS  Google Scholar 

  7. Pepper MS, Rosnoblet C, Di Sanza C, Kruithof EK. Synergistic induction of t-PA by vascular endothelial growth factor and basic fibroblast growth factor and localization of t-PA to Weibel-Palade bodies in bovine microvascular endothelial cells. Thromb Haemost 2001; 86: 702–9.

    PubMed  CAS  Google Scholar 

  8. Odekon LE, Blasi F, Rifkin DB. Requirement for receptor-bound urokinase in plasmin-dependent cellular conversion of latent TGFbeta to TGF-beta. J Cell Physiol 1994; 158: 398–407.

    Article  PubMed  CAS  Google Scholar 

  9. Mars WM, Zarnegar R, Michalopoulos GK. Activation of hepatocyte growth factor by the plasminogen activators uPA and tPA. Am J Pathol 1993; 143: 949–58.

    PubMed  CAS  Google Scholar 

  10. Houck KA, Leung DW, Rowland AM et al. Dual regulation of vascular endothelial growth factor bioavailability by genetic and proteolytic mechanisms. J Biol Chem 1992; 267: 26031–7.

    PubMed  CAS  Google Scholar 

  11. George SJ, Johnson JL, Smith MA, Jackson CL. Plasminmediated fibroblast growth factor-2 mobilisation supports smooth muscle cell proliferation in human saphenous vein. J Vasc Res 2001; 38: 492–501.

    Article  PubMed  CAS  Google Scholar 

  12. Fleury V, Loyau S, Lijnen HR et al. Molecular assembly of plasminogen and tissue-type plasminogen activator on an evolving fibrin surface. Eur J Biochem 1993; 216: 549–56.

    Article  PubMed  CAS  Google Scholar 

  13. Pannell R, Black J, Gurewich V. Complementary modes of action of tissue-type plasminogen activator and pro-urokinase by which their synergistic effect on clot lysis may be explained. J Clin Invest 1988; 81: 853–9.

    PubMed  CAS  Google Scholar 

  14. Sun Z, Chen YH, Wang P et al. The blockage of the high-affinity lysine binding sites of plasminogen by EACA significantly inhibits prourokinase-induced plasminogen activation. Biochim Biophys Acta 2002; 1596: 182–92.

    PubMed  CAS  Google Scholar 

  15. Suenson E, Lutzen O, Thorsen S. Initial plasmin-degradation of fibrin as the basis of a positive feed-back mechanism in fibrinolysis. Eur J Biochem 1984; 140: 513–22.

    Article  PubMed  CAS  Google Scholar 

  16. Cesarman GM, Guevara CA, Hajjar KA. An endothelial cell receptor for plasminogen/tissue plasminogen activator (t-PA). II. Annexin II-mediated enhancement of t-PA-dependent plasminogen activation. J Biol Chem 1994; 269: 21198–203.

    PubMed  CAS  Google Scholar 

  17. Redlitz A, Fowler BJ, Plow EF, Miles LA. The role of an enolaserelated molecule in plasminogen binding to cells. Eur J Biochem 1995; 227: 407–15.

    Article  PubMed  CAS  Google Scholar 

  18. Mignatti P, Tsuboi R, Robbins E, Rifkin DB. In vitro angiogenesis on the human amniotic membrane: Requirement for basic fibroblast growth factor-induced proteinases. J Cell Biol 1989; 108: 671–82.

    Article  PubMed  CAS  Google Scholar 

  19. Bastaki M, Nelli EE, Dell'Era P et al. Basic fibroblast growth factor-induced angiogenic phenotype in mouse endothelium. A study of aortic and microvascular endothelial cell lines. Arterioscler Thromb Vasc Biol 1997; 17: 454–64.

    PubMed  CAS  Google Scholar 

  20. Ambrus JL, Ambrus CM, Toumbis CA et al. Studies on tumor induced angiogenesis. J Med 1991; 22: 355–69.

    PubMed  CAS  Google Scholar 

  21. Koolwijk P, van Erck MG, de Vree WJ et al. Cooperative effect of TNFalpha, bFGF, and VEGF on the formation of tubular structures of human microvascular endothelial cells in a fibrin matrix. Role of urokinase activity. J Cell Biol 1996; 132: 1177–88.

    Article  PubMed  CAS  Google Scholar 

  22. Bajzar L, Manuel R, Nesheim ME. Purification and characterization of TAFI, a thrombin-activable fibrinolysis inhibitor. J Biol Chem 1995; 270: 14477–84.

    Article  PubMed  CAS  Google Scholar 

  23. Sprengers ED, Kluft C. Plasminogen activator inhibitors. Blood 1987; 69: 381–7.

    PubMed  CAS  Google Scholar 

  24. Wang W, Hendriks DF, Scharpe SS. Carboxypeptidase U, a plasma carboxypeptidase with high affinity for plasminogen. J Biol Chem 1994; 269: 15937–44.

    PubMed  CAS  Google Scholar 

  25. Tan AK, Eaton DL. Activation and characterization of procarboxypeptidase B from human plasma. Biochemistry 1995; 34: 5811–6.

    Article  PubMed  CAS  Google Scholar 

  26. Redlitz A, Tan AK, Eaton DL, Plow EF. Plasma carboxypeptidases as regulators of the plasminogen system. J Clin Invest 1995; 96: 2534–8.

    PubMed  CAS  Google Scholar 

  27. Stewart RJ, Fredenburgh JC, Rischke JA et al. Thrombin-activable fibrinolysis inhibitor attenuates (DD)E-mediated stimulation of plasminogen activation by reducing the affinity of (DD)E for tissue plasminogen activator. A potential mechanism for enhancing the fibrin specificity of tissue plasminogen activator. J Biol Chem 2000; 275: 36612–20.

    Article  PubMed  CAS  Google Scholar 

  28. Bajzar L, Nesheim M, Morser J, Tracy PB. Both cellular and soluble forms of thrombomodulin inhibit fibrinolysis by potentiating the activation of thrombin-activable fibrinolysis inhibitor. J Biol Chem 1998; 273: 2792–8.

    Article  PubMed  CAS  Google Scholar 

  29. O'Reilly MS, Holmgren L, Shing Y et al. Angiostatin: A novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 1994; 79: 315–28.

    Article  PubMed  Google Scholar 

  30. O'Reilly MS, Boehm T, Shing Y et al. Endostatin: An endogenous inhibitor of angiogenesis and tumor growth. Cell 1997; 88: 277–85.

    Article  PubMed  Google Scholar 

  31. Reijerkerk A, Mosnier LO, Kranenburg O et al. Amyloid endostatin induces endothelial cell detachment by stimulation of the plasminogen activation system. Mol Cancer Res 2003; 1: 561–8.

    PubMed  CAS  Google Scholar 

  32. Reijerkerk A, Voest EE, Gebbink MF. No grip, no growth: The conceptual basis of excessive proteolysis in the treatment of cancer. Eur J Cancer 2000; 36: 1695–705.

    Article  PubMed  CAS  Google Scholar 

  33. Dewerchin M, Nuffelen AV, Wallays G et al. Generation and characterization of urokinase receptor-deficient mice. J Clin Invest 1996; 97: 870–8.

    PubMed  CAS  Google Scholar 

  34. te Velde EA, Wagenaar, GTM, Reijerkerk A et al. Impaired healing of cutaneous wounds and colonic anastomoses in mice lacking thrombin-activatable fibrinolysis inhibitor. J Thromb Haemost 2003; 2087–96.

  35. Carmeliet P, Schoonjans L, Kieckens L et al. Physiological consequences of loss of plasminogen activator gene function in mice. Nature 1994; 368: 419–24.

    Article  PubMed  CAS  Google Scholar 

  36. Ploplis VA, Carmeliet P, Vazirzadeh S et al. Effects of disruption of the plasminogen gene on thrombosis, growth, and health in mice. Circulation 1995; 92: 2585–93.

    PubMed  CAS  Google Scholar 

  37. Drixler TA, Rinkes IH, Ritchie ED et al. Continuous administration of angiostatin inhibits accelerated growth of colorectal liver metastases after partial hepatectomy. Cancer Res 2000; 60: 1761–5.

    PubMed  CAS  Google Scholar 

  38. Kenyon BM, Voest EE, Chen CC et al. A model of angiogenesis in the mouse cornea. Invest Ophthalmol Vis Sci 1996; 37: 1625–32.

    PubMed  CAS  Google Scholar 

  39. Goldsmith GH Jr. Saito H, Ratnoff OS. The activation of plasminogen by Hageman factor (Factor XII) and Hageman factor fragments. J Clin Invest 1978; 62: 54–60.

    PubMed  CAS  Google Scholar 

  40. Colman RW. Activation of plasminogen by human plasma kallikrein. Biochem Biophys Res Commun 1969; 35: 273–9.

    Article  PubMed  CAS  Google Scholar 

  41. Twining SS, Wilson PM, Ngamkitidechakul C. Extrahepatic synthesis of plasminogen in the human cornea is up-regulated by interleukins-1alpha and-1beta. Biochem J 1999; 339: 705–12.

    Article  PubMed  CAS  Google Scholar 

  42. Drew AF, Kaufman AH, Kombrinck KW et al. Ligneous conjunctivitis in plasminogen-deficient mice. Blood 1998; 91: 1616–24.

    PubMed  CAS  Google Scholar 

  43. Kao WW, Kao CW, Kaufman AH et al. Healing of corneal epithelial defects in plasminogen-and fibrinogen-deficient mice. Invest Ophthalmol Vis Sci 1998; 39: 502–8.

    PubMed  CAS  Google Scholar 

  44. Watanabe M, Yano W, Kondo S et al. Up-regulation of urokinase-type plasminogen activator in corneal epithelial cells induced by wounding. Invest Ophthalmol Vis Sci 2003; 44: 3332–8.

    Article  PubMed  Google Scholar 

  45. McGuire PG, Jones TR, Talarico N et al. The urokinase/urokinase receptor system in retinal neovascularisation: Inhibition by A6 suggests a new therapeutic target. Invest Ophthalmol Vis Sci 2003; 44: 2736–42.

    Article  PubMed  Google Scholar 

  46. Min HY, Doyle LV, Vitt CR et al. Urokinase receptor antagonists inhibit angiogenesis and primary tumor growth in syngeneic mice. Cancer Res 1996; 56: 2428–33.

    PubMed  CAS  Google Scholar 

  47. Avery RL, Connor TB Jr., Farazdaghi M. Systemic amiloride inhibits experimentally induced neovascularisation. Arch Ophthalmol 1990; 108: 1474–6.

    PubMed  CAS  Google Scholar 

  48. Rakic JM, Lambert V, Munaut C et al. Mice without uPA, tPA, or plasminogen genes are resistant to experimental choroidal neovascularisation. Invest Ophthalmol Vis Sci 2003; 44: 1732–9.

    Article  PubMed  Google Scholar 

  49. Oh CW, Hoover-Plow J, Plow E. The role of plasminogen in angiogenesis in vivo. J Thromb Haemost 2003; 1: 1683–7.

    Article  PubMed  CAS  Google Scholar 

  50. Ren CJ, Ueda F, Roses DF et al. Irsogladine maleate inhibits angiogenesis in wild-type and plasminogen activator-deficient mice. J Surg Res 1998; 77: 126–31.

    Article  PubMed  CAS  Google Scholar 

  51. Levin EG, del Zoppo GJ. Localization of tissue plasminogen activator in the endothelium of a limited number of vessels. Am J Pathol 1994; 144: 855–61.

    PubMed  CAS  Google Scholar 

  52. Sato Y, Okamura K, Morimoto A et al. Indispensable role of tissue-type plasminogen activator in growth factor-dependent tube formation of human microvascular endothelial cells in vitro. Exp Cell Res 1993; 204: 223–9.

    Article  PubMed  CAS  Google Scholar 

  53. Collen A, Koolwijk P, Kroon ME, Hinsbergh VWM. Influence of fibrin structure on the formation and maintenance of capillary-like tubules by human microvascular endothelial cells. Angiogenesis 1998; 2: 153–65.

    PubMed  CAS  Google Scholar 

  54. Brodsky S, Chen J, Lee A et al. Plasmin-dependent and-independent effects of plasminogen activators and inhibitor-1 on ex vivo angiogenesis. Am J Physiol Heart Circ Physiol 2001; 281: H1784–H92.

    PubMed  CAS  Google Scholar 

  55. Diaz VM, Planaguma J, Thomson TM et al. Tissue plasminogen activator is required for the growth, invasion, and angiogenesis of pancreatic tumor cells. Gastroenterology 2002; 122: 806–19.

    PubMed  CAS  Google Scholar 

  56. Bajou K, Masson V, Gerard RD et al. The plasminogen activator inhibitor PAI-1 controls in vivo tumor vascularization by interaction with proteases, not vitronectin. Implications for antiangiogenic strategies. J Cell Biol 2001; 152: 777–84.

    Article  PubMed  CAS  Google Scholar 

  57. Stack MS, Gately S, Bafetti LM et al. Angiostatin inhibits endothelial and melanoma cellular invasion by blocking matrixenhanced plasminogen activation. Biochem J 1999; 340: 77–84.

    Article  PubMed  CAS  Google Scholar 

  58. McMahon GA, Petitclerc E, Stefansson S et al. Plasminogen activator inhibitor-1 regulates tumor growth and angiogenesis. J Biol Chem 2001; 276: 33964–8.

    Article  PubMed  CAS  Google Scholar 

  59. Gutierrez LS, Schulman A, Brito-Robinson T et al. Tumor development is retarded in mice lacking the gene for urokinasetype plasminogen activator or its inhibitor, plasminogen activator inhibitor-1. Cancer Res 2000; 60: 5839–47.

    PubMed  CAS  Google Scholar 

  60. Ploplis VA, Cornelissen I, Sandoval-Cooper MJ et al. Remodeling of the vessel wall after copper-induced injury is highly attenuated in mice with a total deficiency of plasminogen activator inhibitor-1. Am J Pathol 2001; 158: 107–17.

    PubMed  CAS  Google Scholar 

  61. Lambert V, Munaut C, Noel A et al. Influence of plasminogen activator inhibitor type 1 on choroidal neovascularisation. FASEB J 2001; 15: 1021–7.

    Article  PubMed  CAS  Google Scholar 

  62. Ge M, Tang G, Ryan TJ, Malik AB. Fibrinogen degradation product fragment D induces endothelial cell detachment by activation of cell-mediated fibrinolysis. J Clin Invest 1992; 90: 2508–16.

    Article  PubMed  CAS  Google Scholar 

  63. Meilhac O, Ho-Tin-Noe B, Houard X et al. Pericellular plasmin induces smooth muscle cell anoikis. FASEB J 2003; 17: 1301–3.

    PubMed  CAS  Google Scholar 

  64. Reinartz J, Schafer B, Batrla R et al. Plasmin abrogates alpha v beta 5–mediated adhesion of a human keratinocyte cell line (HaCaT) to vitronectin. Exp Cell Res 1995; 220: 274–82.

    Article  PubMed  CAS  Google Scholar 

  65. Sugimura M, Kobayashi H, Terao T. Plasmin modulators, aprotinin and anti-catalytic plasmin antibody, efficiently inhibit destruction of bovine vascular endothelial cells by choriocarcinoma cells. Gynecol Oncol 1994; 52: 337–46.

    Article  PubMed  CAS  Google Scholar 

  66. Davis GE, Pintar Allen KA, Salazar R, Maxwell SA. Matrix metalloproteinase-1 and-9 activation by plasmin regulates a novel endothelial cell-mediated mechanism of collagen gel contraction and capillary tube regression in three-dimensional collagen matrices. J Cell Sci 2001; 114: 917–30.

    PubMed  CAS  Google Scholar 

  67. Stefansson S, Lawrence DA. The serpin PAI-1 inhibits cell migration by blocking integrin alpha V beta 3 binding to vitronectin. Nature 1996; 383: 441–3.

    Article  PubMed  CAS  Google Scholar 

  68. Czekay RP, Aertgeerts K, Curriden SA, Loskutoff DJ. Plasminogen activator inhibitor-1 detaches cells from extracellular matrices by inactivating integrins. J Cell Biol 2003; 160: 781–91.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martijn F.B.G. Gebbink.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vogten, J.M., Reijerkerk, A., Meijers, J.C. et al. The Role of the Fibrinolytic System in Corneal Angiogenesis. Angiogenesis 6, 311–316 (2003). https://doi.org/10.1023/B:AGEN.0000029414.24060.fe

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:AGEN.0000029414.24060.fe

Navigation