Skip to main content
Log in

Norepinephrine Upregulates Vascular Endothelial Growth Factor in Rat Cardiac Myocytes by a Paracrine Mechanism

  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Norepinephrine has growth-promoting effects in cardiac myocytes. The present study in cultured neonatal rat cardiac myocytes tested the hypothesis that norepinephrine also stimulates expression of vascular endothelial growth factor (VEGF), an important angiogenic factor. As assessed by polymerase chain reaction cardiac myocytes and non-myocytes expressed all three isoforms of rat VEGF, with the short isoform (VEGF121) preferentially expressed in non-myocytes. When cardiac myocytes were stimulated with 1 μM norepinephrine for 24h in the presence or absence of the specific α- and β-adrenoceptor antagonists prazosin and propranolol, respectively, VEGF mRNA levels and splice variant pattern did not change, whereas atrial natriuretic peptide mRNA levels increased 3 to 4-fold. CoCl2 increased VEGF mRNA levels in cardiac myocytes five-fold. When cardiac myocytes were cultured with conditioned medium from non-myocytes that had been stimulated with norepinephrine for 24 h VEGF mRNA increased 2-fold. The increase was blocked by antibodies neutralizing TGFβ. These data suggest that norepinephrine stimulates myocardial angiogenesis by a paracrine mechanism that involves cardiac non-myocytes and TGFβ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ferrara N, Davis-Smyth T. The biology of vascular endothelial growth factor. Endocr Rev d1997; 18: 4–25.

    Article  PubMed  CAS  Google Scholar 

  2. Ferrara N. Role of vascular endothelial growth factor in physiologic and pathologic angiogenesis: Therapeutic implications. Semin Oncol 2002; 29: 10–4.

    PubMed  CAS  Google Scholar 

  3. Houck KA, Ferrara N, Winer J et al. The vascular endothelial growth factor family: Identification of a fourth molecular species and characterization of alternative splicing of RNA. Mol Endocrinol 1991; 5: 1806–14.

    Article  PubMed  CAS  Google Scholar 

  4. Tischer E, Mitchell R, Hartman T et al. The human gene for vascular endothelial growth factor. Multiple protein forms are encoded through alternative exon splicing. J Biol Chem 1991; 266: 11947–54.

    PubMed  CAS  Google Scholar 

  5. Senger DR, Perruzzi CA, Feder J, Dvorak HF. A highly conserved vascular permeability factor secreted by a variety of human and rodent tumor cell lines. Cancer Res 1986; 46: 5629–32.

    PubMed  CAS  Google Scholar 

  6. Ladoux A, Frelin C. Cobalt stimulates the expression of vascular endothelial growth factor mRNA in rat cardiac cells. Biochem Biophys Res Commun 1994; 204: 794–8.

    Article  PubMed  CAS  Google Scholar 

  7. Banai S, Shweiki D, Pinson A et al. Upregulation of vascular endothelial growth factor expression induced by myocardial ischaemia: Implications for coronary angiogenesis. Cardiovasc Res 1994; 28: 1176–9.

    PubMed  CAS  Google Scholar 

  8. Levy AP, Levy NS, Loscalzo J et al. Regulation of vascular endothelial growth factor in cardiac myocytes. Circ Res 1995; 76: 758–66.

    PubMed  CAS  Google Scholar 

  9. Shweiki D, Itin A, Soffer D, Keshet E. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 1992; 359: 843–5.

    Article  PubMed  CAS  Google Scholar 

  10. Claffey KP, Wilkison WO, Spiegelman BM. Vascular endothelial growth factor. Regulation by cell differentiation and activated second messenger pathways. J Biol Chem 1992; 267: 16317–22.

    PubMed  CAS  Google Scholar 

  11. Garrido C, Saule S, Gospodarowicz D. Transcriptional regulation of vascular endothelial growth factor gene expression in ovarian bovine granulosa cells. Growth Fact 1993; 8: 109–17.

    CAS  Google Scholar 

  12. Hayes JS, Mayer SE. Regulation of guinea pig heart phosphorylase kinase by cAMP, protein kinase, and calcium. Am J Physiol 1981; 240: E340–9.

    PubMed  CAS  Google Scholar 

  13. Karliner JS, Kagiya T, Simpson PC. Effects of pertussis toxin on alpha 1–agonist-mediated phosphatidylinositide turnover and myocardial cell hypertrophy in neonatal rat ventricular myocytes. Experientia 1990; 46: 81–4.

    Article  PubMed  CAS  Google Scholar 

  14. Ostman-Smith I. Cardiac sympathetic nerves as the final common pathway in the induction of adaptive cardiac hypertrophy. Clin Sci 1981; 61: 265–72.

    PubMed  CAS  Google Scholar 

  15. Simpson P. Stimulation of hypertrophy of cultured neonatal rat heart cells through an alpha 1–adrenergic receptor and induction of beating through an alpha 1–and beta 1–adrenergic receptor interaction. Evidence for independent regulation of growth and beating. Circ Res 1985; 56: 884–94.

    PubMed  CAS  Google Scholar 

  16. Schlüter KD, Goldberg Y, Taimor G et al. Role of phosphatidylinositol 3–kinase activation in the hypertrophic growth of adult ventricular cardiomyocytes. Cardiovasc Res 1998; 40: 174–81.

    Article  PubMed  Google Scholar 

  17. Bishopric NH, Simpson PC, Ordahl CP. Induction of the skeletal alpha-actin gene in alpha1–adrenoceptor-mediated hypertrophy of rat cardiac myocytes. J Clin Invest 1987; 80: 1194–9.

    PubMed  CAS  Google Scholar 

  18. Cullinan-Bove K, Koos RD. Vascular endothelial growth factor/vascular permeability factor expression in the rat uterus: Rapid stimulation by estrogen correlates with estrogen-induced increases in uterine capillary permeability and growth. Endocrinology 1993; 133: 829–37.

    Article  PubMed  CAS  Google Scholar 

  19. Sambrook J, Fritsch EF, Maniatis T. Molecular Cloning - a Laboratory Manual, 2nd edition. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press 1989.

    Google Scholar 

  20. Weil J, Eschenhagen T, Magnussen O et al. Reduction of myocardial myoglobin in bovine dilated cardiomyopathy. J Mol Cell Cardiol 1997; 29: 743–51.

    Article  PubMed  CAS  Google Scholar 

  21. Salomon Y. Adenylate cyclase assay. Adv Cyclic Nucleotide Res 1979; 10: 35–55.

    PubMed  CAS  Google Scholar 

  22. Eschenhagen T, Mende U, Diederich M et al. Chronic treatment with carbachol sensitizes the myocardium to cAMP-induced arrhythmia. Circulation 1996; 93: 763–71.

    PubMed  CAS  Google Scholar 

  23. Pedram A, Razandi M, Hu RM, Levin ER. Vasoactive peptides modulate vascular endothelial cell growth factor production and endothelial cell proliferation and invasion. J Biol Chem 1992; 272: 17097–103.

    Article  Google Scholar 

  24. Giordano FJ, Gerber HP, Williams SP et al. A cardiac myocyte vascular endothelial growth factor paracrine pathway is required to maintain cardiac function. Proc Natl Acad Sci USA 2001; 98: 5780–5.

    Article  PubMed  CAS  Google Scholar 

  25. Pimentel RC, Yamada KA, Kleber AG, Saffitz JE. Autocrine regulation of myocyte Cx43 expression by VEGF. Circ Res 2002; 90: 671–7.

    Article  PubMed  CAS  Google Scholar 

  26. Eghbali M, Czaja MJ, Zeydel M et al. Collagen chain mRNAs in isolated heart cells from young and adult rats. J Mol Cell Cardiol 1988; 20: 267–76.

    Article  PubMed  CAS  Google Scholar 

  27. Cohen T, Gitay-Goren H, Sharon R et al. VEGF 121, a vascular endothelial growth factor (VEGF) isoform lacking heparin binding ability, requires cell-surface heparan sulfates for efficient binding to the VEGF receptors of human melanoma cells. J Biol Chem 1995; 270: 11322–6.

    Article  PubMed  CAS  Google Scholar 

  28. Houck KA, Leung DW, Rowland AM et al. Dual regulation of vascular endothelial growth factor bioavailability by genetic and proteolytic mechanisms. J Biol Chem 1992; 267: 26031–7.

    PubMed  CAS  Google Scholar 

  29. Pueyo ME, Chen Y, D'Angelo G, Michel JB. Regulation of vascular endothelial growth factor expression by cAMP in rat aortic smooth muscle cells. Exp Cell Res 1998; 238: 354–8.

    Article  PubMed  CAS  Google Scholar 

  30. Asano A, Morimatsu M, Nikami H et al. Adrenergic activation of vascular endothelial growth factor mRNA expression in rat brown adipose tissue: Implication in cold-induced angiogenesis. Biochem J 1997; 328: 179–83.

    PubMed  CAS  Google Scholar 

  31. Grugel S, Finkenzeller G, Weindel K et al. Both v-Ha-Ras and v-Raf stimulate expression of the vascular endothelial growth factor in NIH 3T3 cells. Biol Chem 1995; 270: 25915–9.

    Article  CAS  Google Scholar 

  32. Fischer S, Sharma HS, Karliczek GF, Schaper W. Expression of vascular permeability factor/vascular endothelial growth factor in pig cerebral microvascular endothelial cells and its upregulation by adenosine. Mol Brain Res 1995; 28: 141–8.

    Article  PubMed  CAS  Google Scholar 

  33. Fisher SA, Absher M. Norepinephrine and ANG II stimulate secretion of TGF-beta by neonatal rat cardiac fibroblasts in vitro. Am J Physiol 1995; 268: C910–7.

    PubMed  CAS  Google Scholar 

  34. Li J, Hampton T, Morgan JP, Simons M. Stretch-induced VEGF expression in the heart. J Clin Invest 1997; 100: 18–24.

    Article  PubMed  CAS  Google Scholar 

  35. Zheng W, Seftor EA, Meininger CJ et al. Mechanisms of coronary angiogenesis in response to stretch: Role of VEGF and TGF-beta. Am J Physiol Heart Circ Physiol 2001; 280: H909–17.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joachim Weil.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weil, J., Benndorf, R., Fredersdorf, S. et al. Norepinephrine Upregulates Vascular Endothelial Growth Factor in Rat Cardiac Myocytes by a Paracrine Mechanism. Angiogenesis 6, 303–309 (2003). https://doi.org/10.1023/B:AGEN.0000029411.76494.33

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:AGEN.0000029411.76494.33

Navigation