Skip to main content
Log in

Early Contribution of Pericytes to Angiogenic Sprouting and Tube Formation

  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Immunostaining with endothelial and pericyte markers was used to evaluate the cellular composition of angiogenic sprouts in several types of tumors and in the developing retina. Confocal microscopy revealed that, in addition to conventional endothelial tubes heavily invested by pericytes, all tissues contained small populations of endothelium-free pericyte tubes in which nerve/glial antigen 2 (NG2) positive, platelet-derived growth factor beta (PDGF β) receptor-positive perivascular cells formed the lumen of the microvessel. Perfusion of tumor-bearing mice with FITC-dextran, followed by immunohistochemical staining of tumor vasculature, demonstrated direct apposition of pericytes to FITC-dextran in the lumen, confirming functional connection of the pericyte tube to the circulation. Transplantation of prostate and mammary tumor fragments into NG2-null mice led to the formation of tumor microvasculature that was invariably NG2-negative, demonstrating that pericytes associated with tumor microvessels are derived from the host rather than from the conversion of tumor cells to a pericyte phenotype. The existence of pericyte tubes reflects the early participation of pericytes in the process of angiogenic sprouting. The ability to study these precocious contributions of pericytes to neovascularization depends heavily on the use of NG2 and PDGF β-receptor as reliable early markers for activated pericytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1995; 1: 27–31.

    Article  PubMed  CAS  Google Scholar 

  2. Risau W. Mechanisms of angiogenesis. Nature 1997; 386: 671–4.

    Article  PubMed  CAS  Google Scholar 

  3. Sims DE. Recent advances in pericyte biology – implications for health and disease. Can J Cardiol 1991; 7: 431–43.

    PubMed  CAS  Google Scholar 

  4. Nehls V, Denzer K, Drenckhahn D. Pericyte involvement in capillary sprouting during angiogenesis in situ. Cell Tissue Res 1992; 270: 469–74.

    Article  PubMed  CAS  Google Scholar 

  5. Rhodin JA. Ultrastructure of mammalian venous capillaries, venules, and small collecting veins. J Ultrastruct Res 1968; 25: 452–500.

    Article  PubMed  CAS  Google Scholar 

  6. Bergers G, Benjamin LE. Tumorigenesis and the angiogenic switch. Nat Rev Cancer 2003; 3: 401–10.

    Article  PubMed  CAS  Google Scholar 

  7. Darland DC, D'Amore PA. Blood vessel maturation: Vascular development comes of age. J Clin Invest 1999; 103: 157–8.

    PubMed  CAS  Google Scholar 

  8. Sims DE. The pericyte – a review. Tissue Cell 1986; 18: 153–74.

    Article  PubMed  CAS  Google Scholar 

  9. Ozerdem U, Grako KA, Dahlin-Huppe K et al. NG2 proteoglycan is expressed exclusively by mural cells during vascular morphogenesis. Dev Dyn 2001; 222: 218–27.

    Article  PubMed  CAS  Google Scholar 

  10. Warren BA. The vascular morphology of tumors. In Peterson H-I (ed) Tumor Blood Circulation: Angiogenesis, Vascular Morphology and Blood Flow of Experimental and Human Tumors. Boca Raton, Florida: CRC Press 1979; 31–9.

    Google Scholar 

  11. Chang YS, di Tomaso E, McDonald DM et al. Mosaic blood vessels in tumors: Frequency of cancer cells in contact with flowing blood. Proc Natl Acad Sci USA 2000; 97: 14608–13.

    Article  PubMed  CAS  Google Scholar 

  12. McDonald DM, Choyke PL. Imaging of angiogenesis: From microscope to clinic. Nat Med 2003; 9: 713–25.

    Article  PubMed  CAS  Google Scholar 

  13. Folberg R, Hendrix MJ, Maniotis AJ. Vasculogenic mimicry and tumor angiogenesis. Am J Pathol 2000; 156: 361–81.

    PubMed  CAS  Google Scholar 

  14. Hendrix MJ, Seftor EA, Hess AR, Seftor RE. Angiogenesis: Vasculogenic mimicry and tumour-cell plasticity: Lessons from melanoma. Nat Rev Cancer 2003; 3: 411–21.

    Article  PubMed  CAS  Google Scholar 

  15. Sood AK, Seftor EA, Fletcher MS et al. Molecular determinants of ovarian cancer plasticity. Am J Pathol 2001; 158: 1279–88.

    PubMed  CAS  Google Scholar 

  16. Ozerdem U, Monosov E, Stallcup WB. NG2 proteoglycan expression by pericytes in pathological microvasculature. Microvasc Res 2002; 63: 129–34.

    Article  PubMed  CAS  Google Scholar 

  17. O'Reilly MS, Holmgren L, Shing Y et al. Angiostatin: A novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 1994; 79: 315–28.

    Article  PubMed  Google Scholar 

  18. Fidler IJ. Biological behavior of malignant melanoma cells correlated to their survival in vivo. Cancer Res 1975; 35: 218–24.

    PubMed  CAS  Google Scholar 

  19. Kaighn ME, Narayan KS, Ohnuki Y et al. Establishment and characterization of a human prostatic carcinoma cell line (PC-3): Invest Urol 1979; 17: 16–23.

    PubMed  CAS  Google Scholar 

  20. Horoszewicz JS, Leong SS, Chu TM et al. The LNCaP cell line – a new model for studies on human prostatic carcinoma. Prog Clin Biol Res 1980; 37: 115–32.

    PubMed  CAS  Google Scholar 

  21. Ponten J, Macintyre EH. Long term culture of normal and neoplastic human glia. Acta Pathol Microbiol Scand 1968; 74: 465–86.

    PubMed  CAS  Google Scholar 

  22. Guy CT, Cardiff RD, Muller WJ. Induction of mammary tumors by expression of polyomavirus middle T oncogene: A transgenic mouse model for metastatic disease. Mol Cell Biol 1992; 12: 954–61.

    PubMed  CAS  Google Scholar 

  23. Greenberg NM, DeMayo F, Finegold MJ et al. Prostate cancer in a transgenic mouse. Proc Natl Acad Sci USA 1995; 92: 3439–43.

    Article  PubMed  CAS  Google Scholar 

  24. Ozaki H, Seo MS, Ozaki K et al. Blockade of vascular endothelial cell growth factor receptor signaling is sufficient to completely prevent retinal neovascularization. Am J Pathol 2000; 156: 697–707.

    PubMed  CAS  Google Scholar 

  25. Campochiaro PA. Retinal and choroidal neovascularization. J Cell Physiol 2000; 184: 301–10.

    Article  PubMed  CAS  Google Scholar 

  26. Grako KA, Ochiya T, Barritt D et al. DGF (alpha)-receptor is unresponsive to PDGF-AA in aortic smooth muscle cells from the NG2 knockout mouse. J Cell Sci 1999; 112: 905–15.

    PubMed  CAS  Google Scholar 

  27. Daniel CW, De Ome KB, Young JT et al. The in vivo life span of normal and preneoplastic mouse mammary glands: A serial transplantation study. Proc Natl Acad Sci USA 1968; 61: 53–60.

    Article  PubMed  CAS  Google Scholar 

  28. Gimbrone Jr, MA, Cotran RS, Leapman SB, Folkman J. Tumor growth and neovascularization: An experimental model using the rabbit cornea. J Natl Cancer Inst 1974; 52: 413–27.

    PubMed  Google Scholar 

  29. Kenyon BM, Voest EE, Chen CC et al. A model of angiogenesis in the mouse cornea. Invest Ophthalmol Vis Sci 1996; 37: 1625–32.

    PubMed  CAS  Google Scholar 

  30. Drake CJ, Fleming PA. Vasculogenesis in the day 6.5 to 9.5 mouse embryo. Blood 2000; 95: 1671–9.

    PubMed  CAS  Google Scholar 

  31. Gerhardt H, Betsholtz C. Endothelial-pericyte interactions in angiogenesis. Cell Tissue Res 2003; 314: 15–23.

    Article  PubMed  Google Scholar 

  32. Dolbeare F, Gratzner H, Pallavicini MG, Gray JW. Flow cytometric measurement of total DNA content and incorporated bromodeoxyuridine. Proc Natl Acad Sci USA 1983; 80: 5573–7.

    Article  PubMed  CAS  Google Scholar 

  33. Dean PN, Dolbeare F, Gratzner H et al. Cell-cycle analysis using a monoclonal antibody to BrdUrd. Cell Tissue Kinet 1984; 17: 427–36.

    PubMed  CAS  Google Scholar 

  34. Nowakowski RS, Lewin SB, Miller MW. Bromodeoxyuridine immunohistochemical determination of the lengths of the cell cycle and the DNA-synthetic phase for an anatomically defined population. J Neurocytol 1989; 18: 311–8.

    Article  PubMed  CAS  Google Scholar 

  35. Ezaki T, Baluk P, Thurston G et al. Time course of endothelial cell proliferation and microvascular remodeling in chronic inflammation. Am J Pathol 2001; 158: 2043–55.

    PubMed  CAS  Google Scholar 

  36. Lindahl P, Johansson BR, Leveen P, Betsholtz C. Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science 1997; 277: 242–5.

    Article  PubMed  CAS  Google Scholar 

  37. Dawson B, Trapp RG. Basic and Clinical Biostatistics, 3rd ed. New York: McGraw-Hill 2001.

    Google Scholar 

  38. D'Amato R, Wesolowski E, Smith LE. Microscopic visualization of the retina by angiography with high-molecular-weight fluorescein-labeled dextrans in the mouse. Microvasc Res 1993; 46: 135–42.

    Article  PubMed  Google Scholar 

  39. Rhodin JA, Fujita H. Capillary growth in the mesentery of normal young rats. Intravital video and electron microscope analyses. J Submicrosc Cytol Pathol 1989; 21: 1–34.

    PubMed  CAS  Google Scholar 

  40. Sato Y, Rifkin DB. Inhibition of endothelial cell movement by pericytes and smooth muscle cells: Activation of a latent transforming growth factor-beta 1-like molecule by plasmin during coculture. J Cell Biol 1989; 109: 309–15.

    Article  PubMed  CAS  Google Scholar 

  41. Beck Jr, L, D'Amore PA. Vascular development: Cellular and molecular regulation. FASEB J 1997; 11: 365–73.

    PubMed  CAS  Google Scholar 

  42. Hirschi KK, Rohovsky SA, Beck LH et al. Endothelial cells modulate the proliferation of mural cell precursors via plateletderived growth factor-BB and heterotypic cell contact. Circ Res 1999; 84: 298–305.

    PubMed  CAS  Google Scholar 

  43. Schlingemann RO, Rietveld FJ, de Waal RM et al. Expression of the high molecular weight melanoma-associated antigen by pericytes during angiogenesis in tumors and in healing wounds. Am J Pathol 1990; 136: 1393–405.

    PubMed  CAS  Google Scholar 

  44. Schlingemann RO, Rietveld FJ, Kwaspen F et al. Differential expression of markers for endothelial cells, pericytes, and basal lamina in the microvasculature of tumors and granulation tissue. Am J Pathol 1991; 138: 1335–47.

    PubMed  CAS  Google Scholar 

  45. Schlingemann RO, Oosterwijk E, Wesseling P et al. Aminopeptidase a is a constituent of activated pericytes in angiogenesis. J Pathol 1996; 179: 436–42.

    Article  PubMed  CAS  Google Scholar 

  46. Wesseling P, Schlingemann RO, Rietveld FJ et al. Early and extensive contribution of pericytes/vascular smooth muscle cells to microvascular proliferation in glioblastoma multiforme: An immuno-light and immuno-electron microscopic study. J Neuropathol Exp Neurol 1995; 54: 304–10.

    PubMed  CAS  Google Scholar 

  47. Morikawa S, Baluk P, Kaidoh T et al. Abnormalities in pericytes on blood vessels and endothelial sprouts in tumors. Am J Pathol 2002; 160: 985–1000.

    PubMed  Google Scholar 

  48. Gerhardt H, Golding M, Fruttiger M et al. VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol 2003; 161: 1163–77.

    Article  PubMed  CAS  Google Scholar 

  49. Hughes S, Chang-Ling T. Roles of endothelial cell migration and apoptosis in vascular remodeling during development of the central nervous system. Microcirculation 2000; 7: 317–33.

    Article  PubMed  CAS  Google Scholar 

  50. Le Lievre CS, Le Douarin NM. Mesenchymal derivatives of the neural crest: Analysis of chimaeric quail and chick embryos. J Embryol Exp Morphol 1975; 34: 125–54.

    PubMed  CAS  Google Scholar 

  51. Allt G, Lawrenson JG. Pericytes: Cell biology and pathology. Cells Tissues Organs 2001; 169: 1–11.

    Article  PubMed  CAS  Google Scholar 

  52. Nehls V, Drenckhahn D. Heterogeneity of microvascular pericytes for smooth muscle type alpha-actin. J Cell Biol 1991; 113: 147–54.

    Article  PubMed  CAS  Google Scholar 

  53. Balabanov R, Dore-Duffy P. Role of the CNS microvascular pericyte in the blood-brain barrier. J Neurosci Res 1998; 53: 637–44.

    Article  PubMed  CAS  Google Scholar 

  54. Boado RJ, Pardridge WM. Differential expression of alpha-actin mRNA and immunoreactive protein in brain microvascular pericytes and smooth muscle cells. J Neurosci Res 1994; 39: 430–5.

    Article  PubMed  CAS  Google Scholar 

  55. Alliot F, Rutin J, Leenen PJ, Pessac B. Pericytes and periendothelial cells of brain parenchyma vessels co-express aminopeptidase N, aminopeptidase A, and nestin. J Neurosci Res 1999; 58: 367–78.

    Article  PubMed  CAS  Google Scholar 

  56. Reuterdahl C, Sundberg C, Rubin K et al. Tissue localization of beta receptors for platelet-derived growth factor and plateletderived growth factor B chain during wound repair in humans. J Clin Invest 1993; 91: 2065–75.

    Article  PubMed  CAS  Google Scholar 

  57. Sundberg C, Ljungstrom M, Lindmark G et al. Microvascular pericytes express platelet-derived growth factor-beta receptors in human healing wounds and colorectal adenocarcinoma. Am J Pathol 1993; 143: 1377–88.

    PubMed  CAS  Google Scholar 

  58. Rajkumar VS, Sundberg C, Abraham DJ et al. Activation of microvascular pericytes in autoimmune Raynaud's phenomenon and systemic sclerosis. Arthritis Rheum 1999; 42: 930–41.

    Article  PubMed  CAS  Google Scholar 

  59. Grako KA, Stallcup WB. Participation of the NG2 proteoglycan in rat aortic smooth muscle cell responses to platelet-derived growth factor. Exp Cell Res 1995; 221: 231–40.

    Article  PubMed  CAS  Google Scholar 

  60. Chekenya M, Enger PO, Thorsen F et al. The glial precursor proteoglycan, NG2, is expressed on tumour neovasculature by vascular pericytes in human malignant brain tumours. Neuropathol Appl Neurobiol 2002; 28: 367–80.

    Article  PubMed  CAS  Google Scholar 

  61. Sims DE. Diversity within pericytes. Clin Exp Pharmacol Physiol 2000; 27: 842–6.

    Article  PubMed  CAS  Google Scholar 

  62. Abramsson A, Berlin O, Papayan H et al. Analysis of mural cell recruitment to tumor vessels. Circulation 2002; 105: 112–7.

    Article  PubMed  CAS  Google Scholar 

  63. Yang M, Baranov E, Wang JW et al. Direct external imaging of nascent cancer, tumor progression, angiogenesis, and metastasis on internal organs in the fluorescent orthotopic model. Proc Natl Acad Sci USA 2002; 99: 3824–9.

    Article  PubMed  CAS  Google Scholar 

  64. Bergers G, Song S, Meyer-Morse N et al. Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors. J Clin Invest 2003; 111: 1287–95.

    Article  PubMed  CAS  Google Scholar 

  65. Saharinen P, Alitalo K. Double target for tumor mass destruction. J Clin Invest 2003; 111: 1277–80.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ugur Ozerdem.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ozerdem, U., Stallcup, W.B. Early Contribution of Pericytes to Angiogenic Sprouting and Tube Formation. Angiogenesis 6, 241–249 (2003). https://doi.org/10.1023/B:AGEN.0000021401.58039.a9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:AGEN.0000021401.58039.a9

Navigation