Skip to main content
Log in

New Insights into the Function and Regulation of Endothelial Cell Apoptosis

  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

The sculpting of blood vessels to meet the changing requirements of the tissues they supply is essential for life. Many researchers believe that endothelial cell apoptosis plays an important role in this process. This belief is bolstered by the detection of endothelial apoptosis within remodeling vessels in vivo, the dramatic vascular phenotypes of mice in which regulators of endothelial apoptosis have been inactivated and the apparent dependence of angiogenesis on endothelial apoptosis in vitro. However, when examined carefully, the evidence for or against endothelial cell apoptosis playing an important role in vascular biology is largely indirect and is far from clear-cut. In this review, we will discuss the idiosyncratic process of endothelial cell apoptosis. We will then examine its complex regulation and weigh the in vitro and in vivo evidence that it plays a significant role in mammalian vascular biology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Carmeliet P. Angiogenesis in health and disease. Nat Med 2003; 9: 653–60.

    PubMed  CAS  Google Scholar 

  2. Madge LA, Li JH, Choi J, Pober JS. Inhibition of phosphatidylinositol 3-kinase sensitizes vascular endothelial cells to cytokineinitiated cathepsin-dependent apoptosis. J Biol Chem 2003; 278: 21295–306.

    PubMed  CAS  Google Scholar 

  3. Porn-Ares I, Saido TC, Andersson T, Ares MP. Oxidised lowdensity lipoprotein induces calpain-dependent cell death and ubiquitination of caspase-3 in HMEC-1 endothelial cells. Biochem J 2003; 374: 403–11.

    PubMed  Google Scholar 

  4. Lin X, Fuks Z, Kolesnick R. Ceramide mediates radiationinduced death of endothelium. Crit Care Med 2000; 28: N87–93.

    PubMed  CAS  Google Scholar 

  5. Li H, Zhu H, Xu CJ, Yuan J. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 1998; 94: 491–501.

    PubMed  CAS  Google Scholar 

  6. Karsan A, Yee E, Harlan JM. Endothelial cell death induced by tumor necrosis factor-alpha is inhibited by the Bcl-2 family member, A1. J Biol Chem 1996; 271: 27201–4.

    PubMed  CAS  Google Scholar 

  7. Badrichani AZ, Stroka DM, Bilbao G et al. Bcl-2 and Bcl-XL serve an anti-inflammatory function in endothelial cells through inhibition of NF-kappaB. J Clin Invest 1999; 103: 543–53.

    PubMed  CAS  Google Scholar 

  8. Kerr JF, Wyllie AH, Currie AR. Apoptosis: A basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 1972; 26: 239–57.

    PubMed  CAS  Google Scholar 

  9. Bombeli T, Karsan A, Tait JF, Harlan JM. Apoptotic vascular endothelial cells become procoagulant. Blood 1997; 89: 2429–42.

    PubMed  CAS  Google Scholar 

  10. Granville DJ, Shaw JR, Leong S et al. Release of cytochrome c, Bax migration, Bid cleavage, and activation of caspases 2, 3, 6, 7, 8, and 9 during endothelial cell apoptosis. Am J Pathol 1999; 155: 1021–5.

    PubMed  CAS  Google Scholar 

  11. Solovey A, Gui L, Ramakrishnan S et al. Sickle cell anemia as a possible state of enhanced anti-apoptotic tone: Survival effect of vascular endothelial growth factor on circulating and unanchored endothelial cells. Blood 1999; 93: 3824–30.

    PubMed  CAS  Google Scholar 

  12. Jimenez JJ, Jy W, Mauro LM et al. Endothelial cells release phenotypically and quantitatively distinct microparticles in activation and apoptosis. Thromb Res 2003; 109: 175–80.

    PubMed  CAS  Google Scholar 

  13. Johnson NA, Sengupta S, Lessan K et al. Endothelial cells preparing to die by apoptosis initiate a program of transcriptome and glycome regulation. FASEB J 2003 (Nov 20).

  14. Huang S, Ingber DE. Shape-dependent control of cell growth, differentiation, and apoptosis: Switching between attractors in cell regulatory networks. Exp Cell Res 2000; 261: 91–103.

    PubMed  CAS  Google Scholar 

  15. Blagosklonny MV. Apoptosis, proliferation, differentiation: In search of the order. Semin Cancer Biol 2003; 13: 97–105.

    PubMed  CAS  Google Scholar 

  16. Slowik MR, Min W, Ardito T et al. Evidence that tumor necrosis factor triggers apoptosis in human endothelial cells by interleukin-1-converting enzyme-like protease-dependent and-independent pathways. Lab Invest 1997; 77: 257–67.

    PubMed  CAS  Google Scholar 

  17. Yu J, Tian S, Metheny-Barlow L et al. Modulation of endothelial cell growth arrest and apoptosis by vascular endothelial growth inhibitor. Circ Res 2001; 89: 1161–7.

    PubMed  CAS  Google Scholar 

  18. Clermont F, Adam E, Dumont JE, Robaye B. Survival pathways regulating the apoptosis induced by tumour necrosis factor-alpha in primary cultured bovine endothelial cells. Cell Signal 2003; 15: 539–46.

    PubMed  CAS  Google Scholar 

  19. Cardier JE, Erickson-Miller CL. Fas (CD95)-and tumor necrosis factor-mediated apoptosis in liver endothelial cells: Role of caspase-3 and the p38 MAPK. Microvasc Res 2002; 63: 10–8.

    PubMed  CAS  Google Scholar 

  20. Pru JK, Lynch MP, Davis JS, Rueda BR. Signaling mechanisms in tumor necrosis factor alpha-induced death of microvascular endothelial cells of the corpus luteum. Reprod Biol Endocrinol 2003; 1: 17.

    PubMed  Google Scholar 

  21. Yamaoka-Tojo M, Yamaguchi S, Nitobe J et al. Dual response to Fas ligation in human endothelial cells: Apoptosis and induction of chemokines, interleukin-8 and monocyte chemoattractant protein-1. Coron Artery Dis 2003; 14: 89–94.

    PubMed  Google Scholar 

  22. Richardson BC, Lalwani ND, Johnson KJ, Marks RM. Fas ligation triggers apoptosis in macrophages but not endothelial cells. Eur J Immunol 1994; 24: 2640–5.

    PubMed  CAS  Google Scholar 

  23. Sata M, Hirata Y, Nagai R. Role of Fas/Fas ligand interaction in ischemia-induced collateral vessel growth. Hypertens Res 2002; 25: 577–82.

    PubMed  CAS  Google Scholar 

  24. Volpert OV, Zaichuk T, Zhou W et al. Inducer-stimulated Fas targets activated endothelium for destruction by anti-angiogenic thrombospondin-1 and pigment epithelium-derived factor. Nat Med 2002; 8: 349–57.

    PubMed  CAS  Google Scholar 

  25. Fukuo K, Suhara T, Nakahashi T et al. Activated T cells induce up-regulation of Fas antigen in cultured endothelial cells. Heart Vessels 1997; (Suppl 12): 81–3.

    PubMed  CAS  Google Scholar 

  26. Biancone L, Martino AD, Orlandi V et al. Development of inflammatory angiogenesis by local stimulation of Fas in vivo. J Exp Med 1997; 186: 147–52.

    PubMed  CAS  Google Scholar 

  27. Bannerman DD, Tupper JC, Ricketts WA et al. A constitutive cytoprotective pathway protects endothelial cells from lipopolysaccharide-induced apoptosis. J Biol Chem 2001; 276: 14924–32.

    PubMed  CAS  Google Scholar 

  28. Aoudjit F, Vuori K. Matrix attachment regulates Fas-induced apoptosis in endothelial cells: A role for c-flip and implications for anoikis. J Cell Biol 2001; 152: 633–43.

    PubMed  CAS  Google Scholar 

  29. Rath PC, Aggarwal BB. TNF-induced signaling in apoptosis. J Clin Immunol 1999; 19: 350–64.

    PubMed  CAS  Google Scholar 

  30. Yasumoto K, Okamoto S, Mukaida N et al. Tumor necrosis factor alpha and interferon gamma synergistically induce interleukin 8 production in a human gastric cancer cell line through acting concurrently on AP-1 and NF-kB-like binding sites of the interleukin 8 gene. J Biol Chem 1992; 267: 22506–11.

    PubMed  CAS  Google Scholar 

  31. Bach FH, Hancock WW, Ferran C. Protective genes expressed in endothelial cells: a regulatory response to injury. Immunol Today 1997; 18: 483–6.

    PubMed  CAS  Google Scholar 

  32. Duriez PJ, Wong F, Dorovini-Zis K et al. A1 functions at the mitochondria to delay endothelial apoptosis in response to tumor necrosis factor. J Biol Chem 2000; 275: 18099–107.

    PubMed  CAS  Google Scholar 

  33. Stehlik C, de Martin R, Kumabashiri I et al. Nuclear factor (NF)-kappaB-regulated X-chromosome-linked iap gene expression protects endothelial cells from tumor necrosis factor alphainduced apoptosis. J Exp Med 1998; 188: 211–6.

    PubMed  CAS  Google Scholar 

  34. De Martin R, Hoeth M, Hofer-Warbinek R, Schmid JA. The transcription factor NF-kappa B and the regulation of vascular cell function. Arterioscler Thromb Vasc Biol 2000; 20: E83–8.

    PubMed  CAS  Google Scholar 

  35. Adams JM, Cory S. Life-or-death decisions by the Bcl-2 protein family. Trends Biochem Sci 2001; 26: 61–6.

    PubMed  CAS  Google Scholar 

  36. Zhang W, Shokeen M, Li D, Mehta JL. Identification of apoptosis-inducing factor in human coronary artery endothelial cells. Biochem Biophys Res Comm 2003; 301: 147–51.

    PubMed  CAS  Google Scholar 

  37. Karsan A, Yee E, Kaushansky K, Harlan JM. Cloning of human Bcl-2 homologue: Inflammatory cytokines induce human A1 in cultured endothelial cells. Blood 1996; 87: 3089–96.

    PubMed  CAS  Google Scholar 

  38. Nor JE, Christensen J, Mooney DJ, Polverini PJ. Vascular endothelial growth factor (VEGF)-mediated angiogenesis is associated with enhanced endothelial cell survival and induction of Bcl-2 expression. Am J Pathol 1999; 154: 375–84.

    PubMed  CAS  Google Scholar 

  39. Karsan A, Yee E, Poirier GG et al. Fibroblast growth factor-2 inhibits endothelial cell apoptosis by Bcl-2-dependent and independent mechanisms. Am J Pathol 1997; 151: 1775–84.

    PubMed  CAS  Google Scholar 

  40. Tsukada T, Eguchi K, Migita K et al. Transforming growth factor beta 1 induces apoptotic cell death in cultured human umbilical vein endothelial cells with down-regulated expression of bcl-2. Biochem Biophys Res Comm 1995; 210: 1076–82.

    PubMed  CAS  Google Scholar 

  41. Munshi N, Fernandis AZ, Cherla RP et al. Lipopolysaccharideinduced apoptosis of endothelial cells and its inhibition by vascular endothelial growth factor. J Immunol 2002; 168: 5860–6.

    PubMed  CAS  Google Scholar 

  42. Dhanabal M, Ramchandran R, Waterman MJ et al. Endostatin induces endothelial cell apoptosis. J Biol Chem 1999; 274: 11721–6.

    PubMed  CAS  Google Scholar 

  43. Nor JE, Mitra RS, Sutorik MMet al. Thrombospondin-1 induces endothelial cell apoptosis and inhibits angiogenesis by activating the caspase death pathway. J Vasc Res 2000; 37: 209–18.

    PubMed  CAS  Google Scholar 

  44. Rossig L, Hermann C, Haendeler J et al. Angiotensin II-induced upregulation of MAP kinase phosphatase-3 mRNA levels mediates endothelial cell apoptosis. Basic Res Cardiol 2002; 97: 1–8.

    PubMed  CAS  Google Scholar 

  45. Nakagami H, Morishita R, Yamamoto K et al. Phosphorylation of p38 mitogen-activated protein kinase downstream of baxcaspase-3 pathway leads to cell death induced by high D-glucose in human endothelial cells. Diabetes 2001; 50: 1472–81.

    PubMed  CAS  Google Scholar 

  46. Flusberg DA, Numaguchi Y, Ingber DE. Cooperative control of Akt phosphorylation, bcl-2 expression, and apoptosis by cytoskeletal microfilaments and microtubules in capillary endothelial cells. Mol Biol Cell 2001; 12: 3087–94.

    PubMed  CAS  Google Scholar 

  47. Hippenstiel S, Schmeck B, N'Guessan PD et al. Rho protein inactivation induced apoptosis of cultured human endothelial cells. Am J Physiol Lung Cell Mol Physiol 2002; 283: L830–8.

    PubMed  CAS  Google Scholar 

  48. Datta SR, Katsov A, Hu L et al. 14-3-3 Proteins and survival kinases cooperate to inactivate BAD by BH3 domain phosphorylation. Mol Cell 2000; 6: 41–51.

    PubMed  CAS  Google Scholar 

  49. Cardone MH, Roy N, Stennicke HR et al. Regulation of cell death protease caspase-9 by phosphorylation. Science 1998; 282: 1318–21.

    PubMed  CAS  Google Scholar 

  50. Pugazhenthi S, Nesterova A, Sable C et al. Akt/protein kinase B up-regulates Bcl-2 expression through cAMP-response elementbinding protein. J Biol Chem 2000; 275: 10761–6.

    PubMed  CAS  Google Scholar 

  51. Ferri KF, Kroemer G. Organelle-specific initiation of cell death pathways. Nat Cell Biol 2001; 3: E255–63.

    PubMed  CAS  Google Scholar 

  52. Schechner JS, Nath AK, Zheng L et al. In vivo formation of complex microvessels lined by human endothelial cells in an immunodeficient mouse. Proc Natl Acad Sci USA 2000; 97: 9191–6.

    PubMed  CAS  Google Scholar 

  53. Alon T, Hemo I, Itin A et al. Vascular endothelial growth factor acts as a survival factor for newly formed retinal vessels and has implications for retinopathy of prematurity. Nat Med 1995; 1: 1024–8.

    PubMed  CAS  Google Scholar 

  54. Gerber HP, McMurtrey A, Kowalski J et al. Vascular endothelial growth factor regulates endothelial cell survival through the phosphatidylinositol 3′-kinase/Akt signal transduction pathway. Requirement for Flk-1/KDR activation. J Biol Chem 1998; 273: 30336–43.

    PubMed  CAS  Google Scholar 

  55. Gupta K, Kshirsagar S, Li W et al. VEGF prevents apoptosis of human microvascular endothelial cells via opposing effects on MAPK/ERK and SAPK/JNK signaling. Exp Cell Res 1999; 247: 495–504.

    PubMed  CAS  Google Scholar 

  56. Liu X, Ye X, Yanoff M, Li W. Regulatory effects of soluble growth factors on choriocapillaris endothelial growth and survival. Ophthalmic Res 1998; 30: 302–13.

    PubMed  CAS  Google Scholar 

  57. Fujio Y, Walsh K. Akt mediates cytoprotection of endothelial cells by vascular endothelial growth factor in an anchoragedependent manner. J Biol Chem 1999; 274: 16349–54.

    PubMed  CAS  Google Scholar 

  58. Bussolati B, Dunk C, Grohman M et al. Vascular endothelial growth factor receptor-1 modulates vascular endothelial growth factor-mediated angiogenesis via nitric oxide. Am J Pathol 2001; 159: 993–1008.

    PubMed  CAS  Google Scholar 

  59. Gerber HP, Dixit V, Ferrara N. Vascular endothelial growth factor induces expression of the antiapoptotic proteins Bcl-2 and A1 in vascular endothelial cells. J Biol Chem 1998; 273: 13313–6.

    PubMed  CAS  Google Scholar 

  60. Gratton JP, Morales-Ruiz M, Kureishi Y et al. Akt downregulation of p38 signaling provides a novel mechanism of vascular endothelial growth factor-mediated cytoprotection in endothelial cells. J Biol Chem 2001; 276: 30359–65.

    PubMed  CAS  Google Scholar 

  61. Tran J, Rak J, Sheehan C et al. Marked induction of the IAP family antiapoptotic proteins survivin and XIAP by VEGF in vascular endothelial cells. Biochem Biophys Res Comm 1999; 264: 781–8.

    PubMed  CAS  Google Scholar 

  62. O'Connor DS, Schechner JS, Adida C et al. Control of apoptosis during angiogenesis by survivin expression in endothelial cells. Am J Pathol 2000; 156: 393–8.

    PubMed  Google Scholar 

  63. Suri C, Jones PF, Patan S et al. Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell 1996; 87: 1171–80.

    PubMed  CAS  Google Scholar 

  64. Yancopoulos GD, Davis S, Gale NW et al. Vascular-specific growth factors and blood vessel formation. Nature 2000; 407: 242–8.

    PubMed  CAS  Google Scholar 

  65. Chong ZZ, Kang JQ, Maiese K. Erythropoietin is a novel vascular protectant through activation of Akt1 and mitochondrial modulation of cysteine proteases. Circulation 2002; 106: 2973–9.

    PubMed  CAS  Google Scholar 

  66. Li A, Dubey S, Varney ML et al. IL-8 directly enhanced endothelial cell survival, proliferation, and matrix metallopro-10 H. Duval et al. teinases production and regulated angiogenesis. J Immunol 2003; 170: 3369–76.

    PubMed  CAS  Google Scholar 

  67. D'Arcangelo D, Gaetano C, Capogrossi MC. Acidification prevents endothelial cell apoptosis by Axl activation. Circ Res 2002; 91: e4–12.

    PubMed  Google Scholar 

  68. Ma H, Calderon TM, Fallon JT, Berman JW. Hepatocyte growth factor is a survival factor for endothelial cells and is expressed in human atherosclerotic plaques. Atherosclerosis 2002; 164: 79–87.

    PubMed  CAS  Google Scholar 

  69. Wahl ML, Owen CS, Grant DS. Angiostatin induces intracellular acidosis and anoikis in endothelial cells at a tumor-like low pH. Endothelium 2002; 9: 205–16.

    PubMed  CAS  Google Scholar 

  70. Pollman MJ, Naumovski L, Gibbons GH. Endothelial cell apoptosis in capillary network remodeling. J Cell Physiol 1999; 178: 359–70.

    PubMed  CAS  Google Scholar 

  71. Fuks Z, Persaud RS, Alfieri A et al. Basic fibroblast growth factor protects endothelial cells against radiation-induced programmed cell death in vitro and in vivo. Cancer Res 1994; 54: 2582–90.

    PubMed  CAS  Google Scholar 

  72. Iruela-Arispe ML, Rodriguez-Manzaneque JC, Abu-Jawdeh G. Endometrial endothelial cells express estrogen and progesterone receptors and exhibit a tissue specific response to angiogenic growth factors. Microcirculation 1999; 6: 127–40.

    PubMed  CAS  Google Scholar 

  73. Li L, Haynes MP, Bender JR. Plasma membrane localization and function of the estrogen receptor alpha variant (ER46) in human endothelial cells. Proc Natl Acad Sci USA 2003; 100: 4807–12.

    PubMed  CAS  Google Scholar 

  74. Morales DE, McGowan KA, Grant DS et al. Estrogen promotes angiogenic activity in human umbilical vein endothelial cells in vitro and in a murine model. Circulation 1995; 91: 755–63.

    PubMed  CAS  Google Scholar 

  75. Alvarez RJ, Gips SJ, Moldovan N et al. 17beta-estradiol inhibits apoptosis of endothelial cells. Biochem Biophys Res Comm 1997; 237: 372–81.

    PubMed  CAS  Google Scholar 

  76. Yue TL, Wang X, Louden CS et al. 2-Methoxyestradiol, an endogenous estrogen metabolite, induces apoptosis in endothelial cells and inhibits angiogenesis: Possible role for stress-activated protein kinase signaling pathway and Fas expression. Mol Pharmacol 1997; 51: 951–62.

    PubMed  CAS  Google Scholar 

  77. Zoellner H, Hofler M, Beckmann R et al. Serum albumin is a specific inhibitor of apoptosis in human endothelial cells. J Cell Sci 1996; 109: 2571–80.

    PubMed  CAS  Google Scholar 

  78. Cleaver O, Melton DA. Endothelial signaling during development. Nat Med 2003; 9: 661–8.

    PubMed  CAS  Google Scholar 

  79. Jain RK. Molecular regulation of vessel maturation. Nat Med 2003; 9: 685–93.

    PubMed  CAS  Google Scholar 

  80. Kalluri R. Angiogenesis: Basement membranes: Structure, assembly and role in tumour angiogenesis. Nat Rev Cancer 2003; 3: 422–33.

    PubMed  CAS  Google Scholar 

  81. Frisch SM, Vuori K, Ruoslahti E, Chan-Hui PY. Control of adhesion-dependent cell survival by focal adhesion kinase. J Cell Biol 1996; 134: 793–9.

    PubMed  CAS  Google Scholar 

  82. Re F, Zanetti A, Sironi M et al. Inhibition of anchoragedependent cell spreading triggers apoptosis in cultured human endothelial cells. J Cell Biol 1994; 127: 537–46.

    PubMed  CAS  Google Scholar 

  83. Meredith Jr. JE, Fazeli B, Schwartz MA. The extracellular matrix as a cell survival factor. Mol Biol Cell 1993; 4: 953–61.

    PubMed  CAS  Google Scholar 

  84. Brooks PC, Montgomery AM, Rosenfeld M et al. Integrin alpha v beta 3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell 1994; 79: 1157–64.

    PubMed  CAS  Google Scholar 

  85. Ruegg C, Yilmaz A, Bieler G et al. Evidence for the involvement of endothelial cell integrin alphaVbeta3 in the disruption of the tumor vasculature induced by TNF and IFN-gamma. Nat Med 1998; 4: 408–14.

    PubMed  CAS  Google Scholar 

  86. Stromblad S, Becker JC, Yebra M et al. Suppression of p53 activity and p21WAF1/CIP1 expression by vascular cell integrin alphaVbeta3 during angiogenesis. J Clin Invest 1996; 98: 426–33.

    Article  PubMed  CAS  Google Scholar 

  87. Kabir J, Lobo M, Zachary I. Staurosporine induces endothelial cell apoptosis via focal adhesion kinase dephosphorylation and focal adhesion disassembly independent of focal adhesion kinase proteolysis. Biochem J 2002; 367: 145–55.

    PubMed  CAS  Google Scholar 

  88. Maeshima Y, Sudhakar A, Lively JC et al. Tumstatin, an endothelial cell-specific inhibitor of protein synthesis. Science 2002; 295: 140–3.

    PubMed  CAS  Google Scholar 

  89. Masuda S, Hayashi H, Araki S. Two vascular apoptosis-inducing proteins from snake venom are members of the metalloprotease/ disintegrin family. Eur J Biochem 1998; 253: 36–41.

    PubMed  CAS  Google Scholar 

  90. Wu WB, Chang SC, Liau MY, Huang TF. Purification, molecular cloning and mechanism of action of graminelysin I, a snake-venom-derived metalloproteinase that induces apoptosis of human endothelial cells. Biochem J 2001; 357: 719–28.

    PubMed  CAS  Google Scholar 

  91. Hong SY, Lee H, You WK et al. The snake venom disintegrin salmosin induces apoptosis by disassembly of focal adhesions in bovine capillary endothelial cells. Biochem Biophys Res Comm 2003; 302: 502–8.

    PubMed  CAS  Google Scholar 

  92. Phan C, McMahon AW, Nelson RC et al. Activated lymphocytes promote endothelial cell detachment from matrix: A role for modulation of endothelial cell beta 1 integrin affinity. J Immunol 1999; 163: 4557–63.

    PubMed  CAS  Google Scholar 

  93. Smyth SS, Patterson C. Tiny dancers: The integrin-growth factor nexus in angiogenic signaling. J Cell Biol 2002; 158: 17–21.

    PubMed  CAS  Google Scholar 

  94. Kuzuya M, Satake S, Ramos MA et al. Induction of apoptotic cell death in vascular endothelial cells cultured in three-dimensional collagen lattice. Exp Cell Res 1999; 248: 498–508.

    PubMed  CAS  Google Scholar 

  95. Abu-Ghazaleh R, Kabir J, Jia H et al. Src mediates stimulation by vascular endothelial growth factor of the phosphorylation of focal adhesion kinase at tyrosine 861, and migration and antiapoptosis in endothelial cells. Biochem J 2001; 360: 255–64.

    PubMed  CAS  Google Scholar 

  96. Hutchings H, Ortega N, Plouet J. Extracellular matrix-bound vascular endothelial growth factor promotes endothelial cell adhesion, migration, and survival through integrin ligation. FASEB J 2003 (Apr 22).

  97. Sata M, Walsh K. Endothelial cell apoptosis induced by oxidized LDL is associated with the down-regulation of the cellular caspase inhibitor FLIP. J Biol Chem 1998; 273: 33103–6.

    PubMed  CAS  Google Scholar 

  98. Carmeliet P, Lampugnani MG, Moons L et al. Targeted deficiency or cytosolic truncation of the VE-cadherin gene in mice impairs VEGF-mediated endothelial survival and angiogenesis. Cell 1999; 98: 147–57.

    PubMed  CAS  Google Scholar 

  99. Herren B, Levkau B, Raines EW, Ross R. Cleavage of betacatenin and plakoglobin and shedding of VE-cadherin during endothelial apoptosis: evidence for a role for caspases and metalloproteinases. Mol Biol Cell 1998; 9: 1589–601.

    PubMed  CAS  Google Scholar 

  100. Fujiwara K, Masuda M, Osawa M et al. Is PECAM-1 a mechanoresponsive molecule? Cell Struct Funct 2001; 26: 11–7.

    PubMed  CAS  Google Scholar 

  101. Gao C, Sun W, Christofidou-Solomidou M et al. PECAM-1 functions as a specific and potent inhibitor of mitochondrialdependent apoptosis. Blood 2003; 102: 169–79.

    PubMed  CAS  Google Scholar 

  102. Ilan N, Mohsenin A, Cheung L, Madri JA. PECAM-1 shedding during apoptosis generates a membrane-anchored truncated molecule with unique signaling characteristics. FASEB J 2001; 15: 362–72.

    PubMed  CAS  Google Scholar 

  103. Gupta N, Nodzenski E, Khodarev NN et al. Angiostatin effects on endothelial cells mediated by ceramide and RhoA. EMBO Rep 2001; 2: 536–40.

    PubMed  CAS  Google Scholar 

  104. Chen CS, Mrksich M, Huang S et al. Geometric control of cell life and death. Science 1997; 276: 1425–8.

    PubMed  CAS  Google Scholar 

  105. Azmi TI, O'shea JD. Mechanism of deletion of endothelial cells during regression of the corpus luteum. Lab Invest 1984; 51: 206–17.

    PubMed  CAS  Google Scholar 

  106. Liu XM, Ensenat D, Wang H et al. Physiologic cyclic stretch inhibits apoptosis in vascular endothelium. FEBS Lett 2003; 541: 52–6.

    PubMed  CAS  Google Scholar 

  107. Kaiser D, Freyberg MA, Friedl P. Lack of hemodynamic forces triggers apoptosis in vascular endothelial cells. Biochem Biophys Res Comm 1997; 231: 586–90.

    PubMed  CAS  Google Scholar 

  108. Meeson A, Palmer M, Calfon M, Lang R. A relationship between apoptosis and flow during programmed capillary regression is revealed by vital analysis. Development 1996; 122: 3929–38.

    PubMed  CAS  Google Scholar 

  109. Jalali S, Li YS, Sotoudeh M et al. Shear stress activates p60src-Ras-MAPK signaling pathways in vascular endothelial cells. Arterioscler Thromb Vasc Biol 1998; 18: 227–34.

    PubMed  CAS  Google Scholar 

  110. Chien S, Li S, Shyy YJ. Effects of mechanical forces on signal transduction and gene expression in endothelial cells. Hypertension 1998; 31: 162–9.

    PubMed  CAS  Google Scholar 

  111. Jong Lee H, Young Koh G. Shear stress activates Tie2 receptor tyrosine kinase in human endothelial cells. Biochem Biophys Res Comm 2003; 304: 399–404.

    Google Scholar 

  112. Urbich C, Stein M, Reisinger K et al. Fluid shear stress-induced transcriptional activation of the vascular endothelial growth factor receptor-2 gene requires Sp1-dependent DNA binding. FEBS Lett 2003; 535: 87–93.

    PubMed  CAS  Google Scholar 

  113. Abumiya T, Sasaguri T, Taba Y et al. Shear stress induces expression of vascular endothelial growth factor receptor Flk-1/ KDR through the CT-rich Sp1 binding site. Arterioscler Thromb Vasc Biol 2002; 22: 907–13.

    PubMed  CAS  Google Scholar 

  114. Dimmeler S, Hermann C, Galle J, Zeiher AM. Upregulation of superoxide dismutase and nitric oxide synthase mediates the apoptosis-suppressive effects of shear stress on endothelial cells. Arterioscler Thromb Vasc Biol 1999; 19: 656–64.

    PubMed  CAS  Google Scholar 

  115. McCormick SM, Eskin SG, McIntire LV et al. DNA microarray reveals changes in gene expression of shear stressed human umbilical vein endothelial cells. Proc Natl Acad Sci USA 2001; 98: 8955–60.

    PubMed  CAS  Google Scholar 

  116. Montesano R, Pepper MS, Belin D et al. Induction of angiogenesis in vitro by vanadate, an inhibitor of phosphotyrosine phosphatases. J Cell Physiol 1988; 134: 460–6.

    PubMed  CAS  Google Scholar 

  117. Montesano R, Pepper MS, Orci L. Paracrine induction of angiogenesis in vitro by Swiss 3T3 fibroblasts. J Cell Sci 1993; 105: 1013–24.

    PubMed  CAS  Google Scholar 

  118. Brown KJ, Maynes SF, Bezos A et al. A novel in vitro assay for human angiogenesis. Lab Invest 1996; 75: 539–55.

    PubMed  CAS  Google Scholar 

  119. Bach TL, Barsigian C, Chalupowicz DG et al. VE-Cadherin mediates endothelial cell capillary tube formation in fibrin and collagen gels. Exp Cell Res 1998; 238: 324–34.

    PubMed  CAS  Google Scholar 

  120. Korff T, Augustin HG. Tensional forces in fibrillar extracellular matrices control directional capillary sprouting. J Cell Sci 1999; 112: 3249–58.

    PubMed  CAS  Google Scholar 

  121. Bishop ET, Bell GT, Bloor S et al. An in vitro model of angiogenesis: Basic features. Angiogenesis 1999; 3: 335–44.

    PubMed  CAS  Google Scholar 

  122. Satake S, Kuzuya M, Ramos MA et al. Angiogenic stimuli are essential for survival of vascular endothelial cells in threedimensional collagen lattice. Biochem Biophys Res Comm 1998; 244: 642–6.

    PubMed  CAS  Google Scholar 

  123. Benjamin LE, Golijanin D, Itin A et al. Selective ablation of immature blood vessels in established human tumors follows vascular endothelial growth factor withdrawal [see comments]. J Clin Invest 1999; 103: 159–65.

    PubMed  CAS  Google Scholar 

  124. Pohlman TH, Harlan JM. Human endothelial cell response to lipopolysaccharide, interleukin-1, and tumor necrosis factor is regulated by protein synthesis. Cell Immunol 1989; 119: 41–52.

    PubMed  CAS  Google Scholar 

  125. Meier P, Finch A, Evan G. Apoptosis in development. Nature 2000; 407: 796–801.

    PubMed  CAS  Google Scholar 

  126. Benjamin LE, Hemo I, Keshet E. A plasticity window for blood vessel remodelling is defined by pericyte coverage of the preformed endothelial network and is regulated by PDGF-B and VEGF. Development 1998; 125: 1591–8.

    PubMed  CAS  Google Scholar 

  127. Korff T, Augustin HG. Integration of endothelial cells in multicellular spheroids prevents apoptosis and induces differentiation. J Cell Biol 1998; 143: 1341–52.

    PubMed  CAS  Google Scholar 

  128. Montgomery AM, Reisfeld RA, Cheresh DA. Integrin alpha v beta 3 rescues melanoma cells from apoptosis in three-dimensional dermal collagen. Proc Natl Acad Sci USA 1994; 91: 8856–60.

    PubMed  CAS  Google Scholar 

  129. Bell SE, Mavila A, Salazar R et al. Differential gene expression during capillary morphogenesis in 3D collagen matrices: Regulated expression of genes involved in basement membrane matrix assembly, cell cycle progression, cellular differentiation and Gprotein signaling. J Cell Sci 2001; 114: 2755–73.

    PubMed  CAS  Google Scholar 

  130. Segura I, Serrano A, De Buitrago GG et al. Inhibition of programmed cell death impairs in vitro vascular-like structure formation and reduces in vivo angiogenesis. FASEB J 2002; 16: 833–41.

    PubMed  CAS  Google Scholar 

  131. Raff MC, Barres BA, Burne JF et al. Programmed cell death and the control of cell survival: Lessons from the nervous system. Science 1993; 262: 695–700.

    PubMed  CAS  Google Scholar 

  132. Koseki C, Herzlinger D, al-Awqati Q. Apoptosis in metanephric development. J Cell Biol 1992; 119: 1327–33.

    PubMed  CAS  Google Scholar 

  133. Hammar SP, Mottet NK. Tetrazolium salt and electron-microscopic studies of cellular degeneration and necrosis in the interdigital areas of the developing chick limb. J Cell Sci 1971; 8: 229–51.

    PubMed  CAS  Google Scholar 

  134. Vaux DL, Korsmeyer SJ. Cell death in development. Cell 1999; 96: 245–54.

    PubMed  CAS  Google Scholar 

  135. Fisher SA, Langille BL, Srivastava D. Apoptosis during cardiovascular development. Circ Res 2000; 87: 856–64.

    PubMed  CAS  Google Scholar 

  136. Cho A, Courtman DW, Langille BL. Apoptosis (programmed cell death) in arteries of the neonatal lamb. Circ Res 1995; 76: 168–75.

    PubMed  CAS  Google Scholar 

  137. Kim HS, Hwang KK, Seo JW et al. Apoptosis and regulation of Bax and Bcl-X proteins during human neonatal vascular remodeling. Arterioscler Thromb Vasc Biol 2000; 20: 957–63.

    PubMed  CAS  Google Scholar 

  138. Fierlbeck W, Liu A, Coyle R, Ballermann BJ. Endothelial cell apoptosis during glomerular capillary lumen formation in vivo. J Am Soc Nephrol 2003; 14: 1349–54.

    PubMed  CAS  Google Scholar 

  139. Mitchell CA, Risau W, Drexler HC. Regression of vessels in the tunica vasculosa lentis is initiated by coordinated endothelial apoptosis: A role for vascular endothelial growth factor as a survival factor for endothelium. Dev Dyn 1998; 213: 322–33.

    PubMed  CAS  Google Scholar 

  140. Lang R, Lustig M, Francois F et al. Apoptosis during macrophage-dependent ocular tissue remodelling. Development 1994; 120: 3395–403.

    PubMed  CAS  Google Scholar 

  141. Lang RA, Bishop JM. Macrophages are required for cell death and tissue remodeling in the developing mouse eye. Cell 1993; 74: 453–62.

    PubMed  CAS  Google Scholar 

  142. Meeson AP, Argilla M, Ko K et al. VEGF deprivation-induced apoptosis is a component of programmed capillary regression. Development 1999; 126: 1407–15.

    PubMed  CAS  Google Scholar 

  143. Gerber HP, Hillan KJ, Ryan AM et al. VEGF is required for growth and survival in neonatal mice. Development 1999; 126: 1149–59.

    PubMed  CAS  Google Scholar 

  144. Dumont DJ, Gradwohl G, Fong GH et al. Dominant-negative and targeted null mutations in the endothelial receptor tyrosine kinase, tek, reveal a critical role in vasculogenesis of the embryo. Genes Dev 1994; 8: 1897–909.

    PubMed  CAS  Google Scholar 

  145. Hughes S, Chang-Ling T. Roles of endothelial cell migration and apoptosis in vascular remodeling during development of the central nervous system. Microcirculation 2000; 7: 317–33.

    PubMed  CAS  Google Scholar 

  146. Niswender GD, Juengel JL, Silva PJ et al. Mechanisms controlling the function and life span of the corpus luteum. Physiol Rev 2000; 80: 1–29.

    PubMed  CAS  Google Scholar 

  147. Gaytan F, Morales C, Bellido C, Sanchez-Criado JE. Selective apoptosis of luteal endothelial cells in dexamethasone-treated rats leads to ischemic necrosis of luteal tissue. Biol Reprod 2002; 66: 232–40.

    PubMed  CAS  Google Scholar 

  148. Dickson SE, Bicknell R, Fraser HM. Mid-luteal angiogenesis and function in the primate is dependent on vascular endothelial growth factor. J Endocrinol 2001; 168: 409–16.

    PubMed  CAS  Google Scholar 

  149. Modlich U, Kaup FJ, Augustin HG. Cyclic angiogenesis and blood vessel regression in the ovary: Blood vessel regression during luteolysis involves endothelial cell detachment and vessel occlusion. Lab Invest 1996; 74: 771–80.

    PubMed  CAS  Google Scholar 

  150. Matsumoto M, Nishinakagawa H, Kurohmaru M et al. Pregnancy and lactation affect the microvasculature of the mammary gland in mice. J Vet Med Sci 1992; 54: 937–43.

    PubMed  CAS  Google Scholar 

  151. Djonov V, Andres AC, Ziemiecki A. Vascular remodelling during the normal and malignant life cycle of the mammary gland. Microsc Res Tech 2001; 52: 182–9.

    PubMed  CAS  Google Scholar 

  152. Desmouliere A, Redard M, Darby I, Gabbiani G. Apoptosis mediates the decrease in cellularity during the transition between granulation tissue and scar. Am J Pathol 1995; 146: 56–66.

    PubMed  CAS  Google Scholar 

  153. Greenhalgh DG. The role of apoptosis in wound healing. Int J Biochem Cell Biol 1998; 30: 1019–30.

    PubMed  CAS  Google Scholar 

  154. Norata GD, Tonti L, Roma P, Catapano AL. Apoptosis and proliferation of endothelial cells in early atherosclerotic lesions: Possible role of oxidised LDL. Nutr Metab Cardiovasc Dis 2002; 12: 297–305.

    PubMed  CAS  Google Scholar 

  155. Mehta U, Kang BP, Bansal G, Bansal MP. Studies of apoptosis and bcl-2 in experimental atherosclerosis in rabbit and influence of selenium supplementation. Gen Physiol Biophys 2002; 21: 15–29.

    PubMed  CAS  Google Scholar 

  156. Joussen AM, Poulaki V, Mitsiades N et al. Suppression of Fas-FasL-induced endothelial cell apoptosis prevents diabetic bloodretinal barrier breakdown in a model of streptozotocin-induced diabetes. FASEB J 2003; 17: 76–8.

    PubMed  CAS  Google Scholar 

  157. Woywodt A, Streiber F, de Groot K et al. Circulating endothelial cells as markers for ANCA-associated small-vessel vasculitis. Lancet 2003; 361: 206–10.

    PubMed  CAS  Google Scholar 

  158. Dai Q, Thompson MA, Pippen AM et al. Alterations in endothelial cell proliferation and apoptosis contribute to vascular remodeling following hind-limb ischemia in rabbits. Vasc Med 2002; 7: 87–91.

    PubMed  Google Scholar 

  159. Natori S, Higuchi H, Contreras P, Gores GJ. The caspase inhibitor IDN-6556 prevents caspase activation and apoptosis in sinusoidal endothelial cells during liver preservation injury. Liver Transpl 2003; 9: 278–84.

    PubMed  Google Scholar 

  160. Hall AV, Jevnikar AM. Significance of endothelial cell survival programs for renal transplantation. Am J Kidney Dis 2003; 41: 1140–54.

    PubMed  Google Scholar 

  161. Krupnick AS, Kreisel D, Popma SH et al. Mechanism of T cellmediated endothelial apoptosis. Transplantation 2002; 74: 871–6.

    PubMed  CAS  Google Scholar 

  162. Bussolati B, Deambrosis I, Russo S et al. Altered angiogenesis and survival in human tumor-derived endothelial cells. FASEB J 2003; 17: 1159–61.

    PubMed  CAS  Google Scholar 

  163. Garcia-Barros M, Paris F, Cordon-Cardo C et al. Tumor response to radiotherapy regulated by endothelial cell apoptosis. Science 2003; 300: 1155–9.

    PubMed  CAS  Google Scholar 

  164. Benjamin LE, Keshet E. Conditional switching of vascular endothelial growth factor (VEGF) expression in tumors: Induction of endothelial cell shedding and regression of hemangioblastoma-like vessels by VEGF withdrawal. Proc Natl Acad Sci USA 1997; 94: 8761–6.

    PubMed  CAS  Google Scholar 

  165. Fernandez A, Udagawa T, Schwesinger C et al. Angiogenic potential of prostate carcinoma cells overexpressing bcl-2. J Natl Cancer Inst 2001; 93: 208–13.

    PubMed  CAS  Google Scholar 

  166. Watnick RS, Cheng YN, Rangarajan A, Ince TA et al. Ras modulates Myc activity to repress thrombospondin-1 expression and increase tumor angiogenesis. Cancer Cell 2003; 3: 219–31.

    PubMed  CAS  Google Scholar 

  167. Volpert OV, Alani RM. Wiring the angiogenic switch: Ras, Myc, and Thrombospondin-1. Cancer Cell 2003; 3: 199–200.

    PubMed  CAS  Google Scholar 

  168. Pal S, Datta K, Mukhopadhyay D. Central role of p53 on regulation of vascular permeability factor/vascular endothelial growth factor (VPF/VEGF) expression in mammary carcinoma. Cancer Res 2001; 61: 6952–7.

    PubMed  CAS  Google Scholar 

  169. Satchi-Fainaro R. Targeting tumor vasculature: reality or a dream? J Drug Target 2002; 10: 529–33.

    PubMed  CAS  Google Scholar 

  170. Nair S, Boczkowski D, Moeller B et al. Synergy between tumor immunotherapy and anti-angiogenic therapy. Blood 2003

  171. Boivin D, Gendron S, Beaulieu E et al. The antiangiogenic agent Neovastat (AE-941) induces endothelial cell apoptosis. Mol Cancer Ther 2002; 1: 795–802.

    PubMed  CAS  Google Scholar 

  172. Claesson-Welsh L, Welsh M, Ito N et al. Angiostatin induces endothelial cell apoptosis and activation of focal adhesion kinase independently of the integrin-binding motif RGD. Proc Natl Acad Sci USA 1998; 95: 5579–83.

    PubMed  CAS  Google Scholar 

  173. Don AS, Kisker O, Dilda P et al. A peptide trivalent arsenical inhibits tumor angiogenesis by perturbing mitochondrial function in angiogenic endothelial cells. Cancer Cell 2003; 3: 497–509.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristin Print.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duval, H., Harris, M., Li, J. et al. New Insights into the Function and Regulation of Endothelial Cell Apoptosis. Angiogenesis 6, 171–183 (2003). https://doi.org/10.1023/B:AGEN.0000021390.09275.bc

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:AGEN.0000021390.09275.bc

Navigation