Annals of Global Analysis and Geometry

, Volume 26, Issue 3, pp 271–313 | Cite as

Asymptotic Estimates for a Variational Problem Involving a Quasilinear Operator in the Semi-Classical Limit

  • Y. Belaud


Let Ω be a domain of ℝ N . We study the infimum λ1(h) of the functional ∫Ω|∇u| p +hpV(x)|u| p dx in W1,p(Ω) for ||u||LP(Ω)= 1 where h > 0 tends to zero and V is a measurable function on Ω. When V is bounded, we describe the behaviour of λ1(h), in particular when V is radial and 'slowly' decaying to zero. We also study the limit of λ1(h) when h→ 0 for more general potentials and show a necessary and sufficient condition for λ1(h) to be bounded. A link with the tunelling effect is established. We end with a theorem of existence for a first eigenfunction related to λ1(h).

nonlinear equation p-Laplacian semi-classical limits first eigenvalue tunelling effect 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1. Brezis, H.: Analyse fonctionnelle, in: Théorie et applications, Collection mathématiques appliquées pour la maîtrise, Masson, Paris, 1986.Google Scholar
  2. 2. Belaud, Y.: Time-vanishing properties of solutions of some degenerate parabolic equations with strong absorption, Adv. Nonlinear Stud.1(2) (2001), 117–152.Google Scholar
  3. 3. Belaud, Y., Helffer, B., Véron, L.: Long-time vanishing properties of solutions of sublinear parabolic equations and semi-classical limit of Schrödinger operator, Ann. Inst. Henri Poincarré Anal. Nonlinear 18(1) (2001), 43–68.Google Scholar
  4. 4. Berezin, F.A. and Shubin, M.A.: The Schrödinger Equation, Kluwer Acad. Publ. Dordrecht, 1991.Google Scholar
  5. 5. Cwikel, M.: Weak type estimates for singular value and the number of bound states of Schrödinger operator, Ann. Math. 106(1977), 93–100.Google Scholar
  6. 6. Gilbarg, D. and Trudinger, N.: Elliptic Partial Differential Equations of Second Order, Springer-Verlag, New York, 1977.Google Scholar
  7. 7. Helffer, B.: Semi-classical Analysis for the Schrödinger Operator and Applications, Lecture Notes in Math. 1336, Springer-Verlag, New York, 1989.Google Scholar
  8. 8. Kondratiev, V. A. and Véron, L.: Asymptotic behaviour of solutions of some nonlinear parabolic or elliptic equations, Asymptotic Anal. 14(1997), 117–156.Google Scholar
  9. 9. Lieb, E. H. and Thirring, W.: Inequalities for the moments of the eigenvalues of the Schrödinger Hamiltonian and their relations to Sobolev Inequalities, in: Studies in Math. Phys., essay in honour of V. Bargmann, Princeton Univ. Press, 1976.Google Scholar
  10. 10. Mossino, J.: Inégalités isopérimétriques et applications en physique, Travaux en cours, Hermann, Paris, 1984.Google Scholar
  11. 11. Rosenblyum, G. V.: Distribution of the discrete spectrum of singular differential operators, Dok-lady Akad. Nauk USSR 202(1972), 1012–1015.Google Scholar
  12. 12. Véron, L.: Effets régularisants de semi-groupes non linéaires dans des espaces de Banach, Ann. faculté des Sciences Toulouse 1(1979), 171–200.Google Scholar
  13. 13. Véron, L.: Coercivité et propriétés régularisantes des semi-groupes non linéaires dans les espaces de Banach, Publication de l'Université François Rabelais-Tours, 1976.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Y. Belaud

There are no affiliations available

Personalised recommendations