Skip to main content
Log in

Formal Mathematical Analysis of the Existence of the Common Intersection Point in Relation to Determining the Parameters Describing Ion Adsorption at the Oxide/Electrolyte Interface: Comparison of the Triple and Four-Layer Models

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

For most oxide/electrolyte systems potentiometric titration curves measured for different ionic strengths have a Common Intersection Point (CIP) which corresponds to the Point of Zero Charge (PZC). However, there are systems where a CIP exists but the surface charge at this point does not equal zero (PZC ≠ CIP). In this paper theoretical analysis of the systems in which the PZC and CIP do not coincide is presented. It is based on the well-known 2-pK surface charging approach and Triple Layer Model (TLM) as well as the Four Layer Model (FLM) of the electric double layer. The appropriate mathematical criterion for CIP existence was applied with detailed derivations, both for TLM and FLM. Having determined in this manner the parameter values, one can draw proper conclusions about the features of oxide/electrolyte adsorption systems, in which PZC and CIP do not coincide. The values of adsorption parameters are found by fitting simultaneously the obtained theoretical expressions to both of the experimental titration isotherms, and to the individual isotherms of electrolyte cation adsorption measured using radiometric methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barrow, N.J., J.W. Bowden, A.M. Posner, and J.P. Quirk, “Describing the Adsorption of Copper, Zinc and Lead on a Variable Charge Mineral Surface,” Aust. J. Soil Res., 19, 309-321 (1981).

    Google Scholar 

  • Block, L. and P.L. De Bruyn, “The Ionic Double Layer at the ZnO/Solution Interface. I. The Experimental Point of the Zero Charge,” J. Colloid Interface Sci., 32, 518-526 (1970).

    Article  Google Scholar 

  • Bousse, L., N.F. De Rooij, and P. Bergveld, “The Influence of Counter-Ion Adsorption on the ψ0/pH Characteristics of Insulator Surface,” Surface Sci., 135, 479-496(1983a).

    Article  Google Scholar 

  • Bousse, L., N.F. De Rooij, and P. Bergveld, “Operation of Chemically Sensitive Field-Effect Sensors as a Function of the Insulator-Electrolyte Interface,” IEEE Trans. Electron Devices, 30, 1263-1270 (1983b).

    Google Scholar 

  • Breeuwsma, A. and J. Lyklema, “Interfacial Electrochemistry of Hematite (α-Fe2O3),” J. Disc. Faraday Soc., 52, 324-333 (1971).

    Article  Google Scholar 

  • Charmas, R., “Calorimetric Effects of Simple Ion Adsorption at the Metal Oxide/Electrolyte Interfaces: An Analysis Based on the Four Layer Complexation,” Langmuir, 14, 6179-6191 (1998).

    Article  Google Scholar 

  • Charmas R., “Four-Layer Complexation Model for Ion Adsorption at Energetically Heterogeneous Metal Oxide/Electrolyte Interfaces,” Langmuir, 15, 5635-5648 (1999).

    Article  Google Scholar 

  • Charmas, R.,W. Piasecki, and W. Rudzinski, ”Four Layer Complexation Model for Ion Adsorption at Electrolyte/Oxide Interface: Theoretical Foundations,” Langmuir, 11, 3199-3210 (1995).

  • Charmas, R. andW. Piasecki, “Four-Layer Complexation Model for Ion Adsorption at Electrolyte/Oxide Interface: Interrelations of Model Parameters,” Langmuir, 12, 5458-5465 (1996).

    Article  Google Scholar 

  • Davis, J.A., R.O. James, and J.O. Leckie, “Surface Ionization and Complexation at the Oxide/Water Interface. I. Computation of Electrical Double Layer Properties in Simple Electrolytes,” J. Colloid Interface Sci., 63, 480-499 (1978).

    Google Scholar 

  • Davis, J.A and J.O. Leckie, “Surface Ionization and Complexation at the Oxide/Water Interface. II. Surface Properties of Amorphous Iron Oxyhydroxide and Adsorption of Metal Ions,” J. Colloid Interface Sci., 67, 90-107 (1978).

    Article  Google Scholar 

  • Davis, J.A. and J.O. Leckie, Chemical Modelling Aqueous Systems, E.A. Jenne (Ed.), Chap. 15, American Chemical Society, Washington, DC, 1979.

    Google Scholar 

  • Davis, J.A. and J.O. Leckie, “Surface Ionization and Complexation at the Oxide/Water Interface. III. Adsorption of Anions,” J. Colloid Interface Sci., 74, 32-43 (1980).

    Article  Google Scholar 

  • Hiemstra, T., P. Venema, and W. Van Riemsdijk, “Intrinsic Proton Affinity of Reactive Surface Groups of Metal (Hydr)oxides: The Bond Valence Principle,” J. Colloid Interface Sci., 184, 680-692 (1996).

    Article  Google Scholar 

  • Janusz, W., I. Kobal, A. Sworska, and J. Szczypa, “Investigation of the Electrical Double Layer in a Metal Oxide/Monovalent Electrolyte Solution System,” J. Colloid Interface Sci., 187, 381-387 (1997).

    Article  Google Scholar 

  • Kokarev, G.A., V.A. Kolesnikov, A.F. Gubin, and A.A. Korbanov, “Tocki Hulevogo Zariada Okcindov v Vodnyx Rastvorax Elektrlytov,” Elektrokhimiya, 18, 466-470 (1982).

    Google Scholar 

  • Kosmulski, M., “Attempt to Determine Pristine Points of Zero Charge of Nb2O5, Ta2O5 and HfO2,” Langmuir, 13, 6315-6320 (1997).

    Article  Google Scholar 

  • Kosmulski, M., “Chemical Properties of Material Surfaces,” Surfactant Science Series, vol. 102, p. 65, Marcel Dekker, New York 2001.

    Google Scholar 

  • Lyklema, J., “Points of Zero Charge in the Presence of Specific Adsorption,” J. Colloid Interface Sci., 99, 109-117 (1984).

    Article  Google Scholar 

  • Mustafa, M., B. Dilara, Z. Neelofer, A. Naeem, and Z. Tasleem, “Temperature Effect on the Surface Charge Properties of Gamma-Al2O3,” J. Colloid Interface Sci., 204, 284-293 (1998).

    Article  Google Scholar 

  • Penners, N.H.G., L.K. Koopal, and J. Lyklema, “Interfacial Electrochemistry of Hematite (α-Fe2O3) Homodisperse and Heterodisperse Sols,” Colloids Surf., 21, 457-468 (1986).

    Article  Google Scholar 

  • Persin, M., J. Randon, J. Sarrazin, A. Larbot, C. Guizard, and L. Cot, “Influence of Membrane-Solution on the Performance of Zirconia Ultrafiltration Membrane,” J. Colloid Interface Sci., 154, 416-422 (1992).

    Article  Google Scholar 

  • Rudzinski, W., R. Charmas, S. Partyka, and A. Foissy, “A Calorimetric-Termodynamic Study of Ion Adsorption at the Water/ Anatase Interface, Based on the Surface Complexation Model,” New J. Chem., 15, 327-335 (1991).

    Google Scholar 

  • Rudzinski,W., R. Charmas, S. Partyka, F. Thomas, and J.Y. Bottero, “On the Nature of the Energetic Heterogeneity in Ion Adsorption at aWater/Oxide Interface: The Behaviour of Potentiometric, Electrokinetic and Radiometric Data,” Langmuir, 8, 1154-1164 (1992).

    Google Scholar 

  • Rudzinski, W., R. Charmas, W. Piasecki, F. Thomas, F. Villieras, B. Prelot, and J.M. Cases, “Calorimeric Effects Accompanying Ion Adsorption at the Charged Metal Oxide/Electrolyte Interfaces: Effects of Oxide Surface Energetic Heterogeneity,” Langmuir, 14, 5210-5225 (1998).

    Article  Google Scholar 

  • Rudzinski, W., R. Charmas, W. Piasecki, A.J. Groszek, F. Thomas, F. Villieras, B. Prelot, and J.M. Cases, “Experimental Studies and Theoretical Interpretation of the Calorimetric Effects Accompanying Ion Adsorption at Oxide/Electrolyte Interfaces: Application of Flow Adsorption Calorimetry,” Langmuir, 15, 5921-5931 (1999a).

    Article  Google Scholar 

  • Rudzinski, W., R. Charmas, W. Piasecki, B. Prelot, F. Thomas, F. Villieras, and J.M. Cases, “Calorimeric Effects of Simple Ion Adsorption at the Silica/Electrolyte Interfaces: Quantitative Analysis of Surface Energetic Heterogeneity,” Langmuir, 15, 5977-5983 (1999b).

    Article  Google Scholar 

  • Rudzinski, W., R. Charmas, W. Piasecki, F. Thomas, F. Villieras, B. Prelot, and J.M. Cases, “Estimation of Entalpic Effects of Ion Adsorption at Oxide/Electrolyte Interfaces from Temperature Dependence of Adsorption Data,” Colloids and Surfaces A., 152, 381-386 (1999c).

    Google Scholar 

  • Rudzinski,W.,W. Piasecki, G. Panas, and R. Charmas, “Calorimetric Effects and Temperature Dependence of Simple Ion Adsorption at Oxide/Electrolyte Interfaces: The Systems in Which PZC and CIP Do Not Coincide,” J. Colloid Interface Sci.., 226, 353-363 (2000).

    Article  Google Scholar 

  • Rudzinski, W., W. Piasecki, W. Janusz, G. Panas, and R. Charmas, “A Thermodynamic Analysis of Ion Adsorption in the Metal Oxide/ Electrolyte Systems in which PZC and CIP do not Coincide,” Adsorption, 7, 327-338 (2001).

    Article  Google Scholar 

  • Sposito, G., Environmental Particles, J. Buffle and H.P. van Leeuven (Eds.), vol. 1, Chap. 7, pp. 291-314, Lewis, Boca Raton, 1992.

    Google Scholar 

  • Sverjensky, A., “Standard States for Activities of Mineral Surface Sites and Species,” Geochimica et Cosmochimica Acta, 67, 17-28 (2003).

    Article  Google Scholar 

  • Van der Vlekkert, H., L. Bousse, and N.F. De Rooij, “The Temperature Dependence of the Surface Potential at the Al2O3/Electrolyte Interface,” J. Colloid Interface Sci., 122, 336-345 (1988).

    Article  Google Scholar 

  • Yates, D.E. andT.W. Healy, “Titanium Dioxide-Electrolyte Interface. II. Surface Charge (Titration) Studies,” J. Chem. Soc., FaradayI 76, 9-18 (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Charmas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zarzycki, P., Charmas, R. & Piasecki, W. Formal Mathematical Analysis of the Existence of the Common Intersection Point in Relation to Determining the Parameters Describing Ion Adsorption at the Oxide/Electrolyte Interface: Comparison of the Triple and Four-Layer Models. Adsorption 10, 139–149 (2004). https://doi.org/10.1023/B:ADSO.0000039869.47241.02

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:ADSO.0000039869.47241.02

Navigation