Skip to main content
Log in

Orthogonal Zonal, Tesseral and Sectorial Wavelets on the Sphere for the Analysis of Satellite Data

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

The spherical harmonics Y n,k } n=0,1,...;k=−n,...,n represent a standard complete orthonormal system in ℒ2(Ω), where Ω is the unit sphere. In view of present and future satellite missions (e.g., for the determination of the Earth's gravity field) it is of particular importance to treat the different accuracies and sizes of data in dependence of the index pairs (n,k). It is, e.g., known that the GOCE mission yields essentially less accurate data in the zonal (k=0) case. Therefore, this paper presents new ways of constructing multiresolutions for a Sobolev space of functions on Ω allowing the separate treatment of certain classes of pairs (n,k) and, in particular, the separate treatment of different orders k. Orthogonal bandlimited as well as non-bandlimited detail and scale spaces adapted to certain (geo)scientific problems and to the character of the given data can now be used. Finally, an explicit representation of a non-bandlimited wavelet on Ω yielding an orthogonal decomposition of the function space is calculated for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Aronszajn, Theory of reproducing kernels, Trans. Amer. Math. Soc. 68 (1950) 337–404.

    Google Scholar 

  2. I. Daubechies, Ten Lectures onWavelets, CBMS-NSF Series in AppliedMathematics, Vol. 61 (SIAM, Philadelphia, PA, 1992).

    Google Scholar 

  3. ESA, Gravity field and steady-state ocean circulation mission, The four candidate Earth explorer core missions, ESA SP-1233 (1) (1999).

  4. W. Freeden, Über eine Klasse von Integralformeln der Mathematischen Geodäsie, Veröffentlichungen des Geodätischen Instituts der RWTH Aachen 27 (1979).

  5. W. Freeden, Über die Gaußsche Methode zur angenäherten Berechnung von Integralen, Math. Methods Appl. Sci. 2 (1980) 397–409.

    Google Scholar 

  6. W. Freeden, Multiscale Modelling of Spaceborne Geodata (Teubner, Stuttgart/Leipzig, 1999).

    Google Scholar 

  7. W. Freeden, T. Gervens and M. Schreiner, Constructive Approximation on the Sphere with Applications to Geomathematics (Oxford Univ. Press, Oxford, 1998).

    Google Scholar 

  8. W. Freeden and V. Michel, Constructive approximation and numerical methods in geodetic research today — an attempt at a categorization based on an uncertainty principle, J. Geodesy 73 (1999) 452–465.

    Google Scholar 

  9. W. Freeden and F. Schneider, Wavelet approximation on closed surfaces and their application to boundary-value problems of potential theory, Math. Methods Appl. Sci. 21 (1998) 129–163.

    Google Scholar 

  10. W. Freeden and M. Schreiner, Orthogonal and non-orthogonal multiresolution analysis, scale discrete and exact fully discrete wavelet transform on the sphere, Construct. Approx. 14 (1998) 493–515.

    Google Scholar 

  11. W. Freeden and U. Windheuser, Spherical wavelet transform and its discretization, Adv. in Comput. Math. 5 (1996) 51–94.

    Google Scholar 

  12. I.S. Gradshteyn and I.M. Ryzhik, Tables of Integral, Series, and Products (Academic Press, New York, 1980).

    Google Scholar 

  13. E.R. Hansen, A Table of Series and Products (Prentice-Hall, Englewood Cliffs, NJ, 1975).

    Google Scholar 

  14. W.A. Heiskanen and H. Moritz, Physical geodesy, Reprint, Institute of Physical Geodesy, Technical University Graz (1981).

  15. R. Klees and R. Haagmans, eds., Wavelets in the Geosciences, Lecture Notes in Earth Sciences, Vol. 90 (Springer, Berlin/Heidelberg, 2000).

    Google Scholar 

  16. W. Magnus and F. Oberhettinger, Formeln und Sätze für die Speziellen Funktionen der Mathematischen Physik (Springer, Berlin, 1948).

    Google Scholar 

  17. S. Mallat, Applied mathematics meets signal processing, in: Proc. of the Internat. Congress of Mathematicians, Berlin, 1998, Vol. I (Documenta Mathematica, 1998) pp. 319–338.

  18. Y. Meyer, Wavelets and Operators, Advanced Mathematics (Cambridge Univ. Press, Cambridge, 1992).

    Google Scholar 

  19. V. Michel, A wavelet based method for the gravimetry problem, in: Progress in Geodetic Science, Proceedings of the Geodetic Week 1998, ed.W. Freeden (Shaker Verlag, Aachen, 1998) pp. 283–298.

    Google Scholar 

  20. V. Michel, A Multiscale Method for the Gravimetry Problem: Theoretical and Numerical Aspects of Harmonic and Anharmonic Modelling, Ph.D. thesis (Shaker Verlag, Aachen, 1999).

    Google Scholar 

  21. V. Michel, Scale continuous, scale discretized and scale discrete harmonic wavelets for the outer and the inner space of a sphere and their application to an inverse problem in geomathematics, Appl. Comput. Harmon. Anal. 12 (2002) 77–99.

    Google Scholar 

  22. C. Müller, Spherical Harmonics, Lecture Notes in Mathematics, Vol. 17 (Springer, New York, 1966).

    Google Scholar 

  23. L. Robin, Fonctions Sphériques de Legendre et Fonctions Sphéroïdales, Tome II, Collection technique et scientifique du Centre National d'Études des Télécommunications (1958).

  24. L. Robin, Fonctions Sphériques de Legendre et Fonctions Sphéroïdales, Tome III, Collection technique et scientifique du Centre National d'Études des Télécommunications (1959).

  25. E. Zeidler, ed., Teubner-Taschenbuch der Mathematik, begründet von I.N. Bronstein und K.A. Semendjajew (Teubner, Stuttgart/Leipzig, 1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freeden, W., Michel, V. Orthogonal Zonal, Tesseral and Sectorial Wavelets on the Sphere for the Analysis of Satellite Data. Advances in Computational Mathematics 21, 181–217 (2004). https://doi.org/10.1023/B:ACOM.0000016429.07498.77

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:ACOM.0000016429.07498.77

Navigation