Skip to main content
Log in

Effective Elastic and Plastic Properties of Interpenetrating Multiphase Composites

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

In interpenetrating phase composites, there are at least two phases that are each interconnected in three dimensions, constructing a topologically continuous network throughout the microstructure. The dependence relation between the macroscopically effective properties and the microstructures of interpenetrating phase composites is investigated in this paper. The effective elastic moduli of such kind of composites cannot be calculated from conventional micromechanics methods based on Eshelby's tensor because an interpenetrating phase cannot be extracted as dispersed inclusions. Using the concept of connectivity, a micromechanical cell model is first presented to characterize the complex microstructure and stress transfer features and to estimate the effective elastic moduli of composites reinforced with either dispersed inclusions or interpenetrating networks. The Mori–Tanaka method and the iso-stress and iso-strain assumptions are adopted in an appropriate manner of combination by decomposing the unit cell into parallel and series sub-cells, rendering the calculation of effective moduli quite easy and accurate. This model is also used to determine the elastoplastic constitutive relation of interpenetrating phase composites. Several typical examples are given to illustrate the application of this method. The obtained analytical solutions for both effective elastic moduli and elastoplastic constitutive relations agree well with the finite element results and experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Clark, D. R., 'Interpenetrating Phase Composites', Journal of the American Ceramic Society 75, 1992, 739–759.

    Google Scholar 

  2. Wegner, L. D. and Gibson, L. J., 'The Mechanical Behavior of Interpenetrating Phase Composites-I: Modelling', International Journal of Mechanical Science 42, 2000, 925–942.

    Google Scholar 

  3. Wegner, L. D. and Gibson, L. J., 'The Mechanical Behaviour of Interpenetrating Phase Composites, II: A Case Study of a Three-Dimensionally Printed Material', International Journal of Mechanical Science 42, 2000, 943–964.

    Google Scholar 

  4. Wegner, L. D. and Gibson, L. J., 'The Mechanical Behaviour of Interpenetrating Phase Composites, III: Resin-Impregnated Porous Stainless Steel', International Journal of Mechanical Science 43, 2001, 1061–1072.

    Google Scholar 

  5. Liu, W. and Köster, U., 'Microstructures and Properties of Interpenetrating Alumina/Aluminium Composites Made by Reaction of SiO2 Glass Preforms with Molten Aluminum', Materials Science and Engineering A210, 1996, 1–7.

    Google Scholar 

  6. Prielipp, H., Knechtel, M., Claussen, N., Streiffer, S. K., Müllejans, H., RüKhle, M. and Rödel, J., 'Strength and Fracture Toughness of Aluminum/Alumina Composites with Interpenetrating Networks', Materials Science and Engineering A197, 1995, 19–30.

    Google Scholar 

  7. Rödel, J., Prielipp, H., Claussen, N., Sternitzke, M., Alexander, K. B., Becher, P. F. and Schneibel, J. H., 'Ni3Al/Al2O3 Composites with Interpenetrating Networks', Scripta Metallurgica et Materialia 33, 1995, 843–848.

    Google Scholar 

  8. Skirl, S., Hoffman,M., Bowman, K., Wiederhorn, S. and Rödel, J., 'Thermal Expansion Behavior and Macrostrain of Al2O3/Al Composites with Interpenetrating Networks', Acta Materialia 46, 1998, 2493–2499.

    Google Scholar 

  9. Torquato, S., Young, C. L. Y., Rintoul, M. D., Milius, D. L. and Aksay, I. A., 'Elastic Properties and Structure of Interpenetrating Boron Carbide/Aluminum Multiphase Composites', Journal of the American Ceramic Society 82, 1999, 1263-1268.

  10. Daehn, G. S., Starck, B., Xu, L., Elfishawy, K. F., Ringnalda, J. and Fraser, H. L., 'Elastic and Plastic Behavior of a Co-Continuous Aluminum/Alumina Composite', Acta Materialia 44, 1996, 249–261.

    Google Scholar 

  11. Ravichandran, K. S., 'Deformation Behavior of Interpenetrating Phase Composites', Composites Science and Technology 52, 1994, 541–549.

    Google Scholar 

  12. Peng, H. X., Fan, Z. and Evans, J. R. G., 'Bi-Continuous Metal Matrix Composites', Materials Science and Engineering A303, 2001, 37–45.

    Google Scholar 

  13. Aldrich, D. E. and Fan, Z., 'Microstructural Characterisation of Interpenetrating Nickel/Alumina Composites', Materials Characterization 47, 2001, 167–173.

    Google Scholar 

  14. Aboudi, J., Mechanics of Composite Materials: A Unified Micromechanical Method, Elsevier, Amsterdam, 1991.

    Google Scholar 

  15. Nemat-Nasser, S. and Hori, M., Micromechanics: Overall Properties of Heterogeneous Materials, North-Holland, Amsterdam, 1993.

    Google Scholar 

  16. Torquato, S., Random Heterogeneous Materials: Microstructure and Macroscopic Properties, Springer, Heidelberg, 2002.

    Google Scholar 

  17. Poech, M. H. and Ruhr, D., 'Die quantitative Charakterisierung der Gefügeanordnung', Praktische Metallographie Sonderband 324, 1999, 385–391.

    Google Scholar 

  18. Lessle, P., Dong, M., Soppa, E. and Schmauder, S., 'Simulation of Interpenetrating Microstructures by Self-Consistent Matricity Models', Scripta Materialia 38, 1998, 1327–1332.

    Google Scholar 

  19. Dong, M., Soppa, E. and Schmauder, S., 'Modelling of Metal Matrix Composites by a Self-Consistent Embedded Cell Model', Acta Materialia 44, 1996, 2465–2478.

    Google Scholar 

  20. Levassort, R., Lethiecq, M., Desmare, R. and Tran-Huu-Hue, L. P., 'Effective Electroelastic Moduli of 3-3(0-3) Piezocomposites', IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 46, 1999, 1028–1034.

    Google Scholar 

  21. Torquato, S., 'Random Heterogeneous Media: Microstructure and Improved Bounds on the Effective Properties', Applied Mechanics Review 44, 1991, 37–76.

    Google Scholar 

  22. Torquato, S. 'Modeling of Physical Properties of Composite Materials', International Journal of Solids and Structures 37, 2000, 411–422.

    Google Scholar 

  23. Newnham, R. E., Skinner, D. P. and Cross, L. E., 'Connectivity and Piezoelectric-Pyroelectric Scheme', Materials Research Bulletin 13, 1978, 525–536.

    Google Scholar 

  24. Peng, H. X., Fan, Z. and Evans, J. R. G., 'Factors Affecting the Microstructure of a Fine Ceramic Foam', Ceramic International 26, 2000, 887–895.

    Google Scholar 

  25. Mori, T. and Tanaka, K., 'Average Stress in Matrix and Average Elastic Energy of Materials with Misfitting Inclusions', Acta Metallurgica 21, 1973, 571–583.

    Google Scholar 

  26. Walpole, L. J., 'On the Overall Elastic Moduli of Composite Materials', Journal of the Mechanics and Physics of Solids 17, 1969, 235–251.

    Google Scholar 

  27. Mura, T., Micromechanics of Defects in Solids, Martinus Nijhoff Publishers, The Netherlands, 1987.

    Google Scholar 

  28. Michel, J. C., Moulinec, H. and Suquet, P., 'Effective Properties of Composite Material with Periodic Microstructure: A Computational Approach', Computational Methods in Applied Mechanics and Engineering 172, 1999, 109–143.

    Google Scholar 

  29. Ponte Castañeda, P. and Suquet, P., 'Nonlinear Composites', Advances in Applied Mechanics 34, 1998, 171–302.

    Google Scholar 

  30. Teply, J. L. and Dvorak, G. J., 'Bounds on Overall Instantaneous Properties of Elastic-Plastic Composites', Journal of the Mechanics and Physics of Solids 36, 1988, 29–58.

    Google Scholar 

  31. Hu, G. K., 'A Method of Plasticity for General Aligned Spheroidal Void or Fiber-Reinforced Composites', International Journal of Plasticity 12, 1996, 439–449.

    Google Scholar 

  32. Gonzalez, C. and LLorca, J., 'A Self-Consistent Approach to the Elastoplastic Behaviour of Two-Phase Materials Including Damage', Journal of the Mechanics and Physics of Solids 48, 2000, 675–692.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi-Qiao Feng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feng, XQ., Tian, Z., Liu, YH. et al. Effective Elastic and Plastic Properties of Interpenetrating Multiphase Composites. Applied Composite Materials 11, 33–55 (2004). https://doi.org/10.1023/B:ACMA.0000003972.32599.0c

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:ACMA.0000003972.32599.0c

Navigation