Skip to main content
Log in

Feedback Circuits in Hepatitis B Virus Infection

  • Published:
Acta Biotheoretica Aims and scope Submit manuscript

Abstract

A simplified model using kinetic logic is proposed to approach the problem after Hepatitis B viral (HBV) infection. It accounts for several stable regimes or attractors corresponding to the essential dynamic behaviour of the replication of the Hepatitis B virus. Infection with the virus can result in viral clearance, fulminant hepatic failure and death, or chronic transmissible infection, that is multistationarity corresponding to the existence of the positive feedback circuit in our modelling. Another implication of this model is the existence of oscillations or homeostatic mechanisms, sometimes observed in the viral cycle, consistent with the existence of the negative feedback circuit.

Thus, this report shows how a simple model of kinetic logic may be used to account for the variety of manifestations of HBV infection. This model implies the presence of the Hepatitis B e antigen, whose conservation suggests that it plays an important role in the life cycle of hepadnaviruses. Its function in the viral cycle is still unknown, but our model suggests that this antigen could explain the passage from one state of the viral infection (acute or latent) to another, as well as the oscillatory behavior which may account for the intermittent symptoms of hepatitis observed in some patients. Furthermore, this model shows a virgin state. This state is also reached after recovery. The model proposed demonstrates that starting from a viral acute infection, the host's immune response, depending on the immunological status of the patient, can lead to viral clearance, or to periodic spontaneous reactivation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Bar-Yam, Y. (2000). Concepts in Complex Systems. http://necsi.org/guide/concepts/feedback.html

  • Benjelloun, S., S. Tong, J. Li, L. Menfalout, C. Trepo and A. Benslimane (1993). Pre-core mutation associated with lack of hepatitis B e antigenaemia in Moroccan asymptomatic carriers of the virus. Research in Virology 144: 159–167.

    Google Scholar 

  • Brunetto, M.R., M.M. Giarin, F. Oliveri, E. Chiaberge, M. Baldi, A. Alfarano, A. Serra, G. Saracco, G. Verme, H. Will and F. Bonino (1991). Wild-type and e antigen-minus hepatitis B viruses and course of chronic hepatitis. Proceedings of the National Academy of Sciences of the USA 88: 4186–4190.

    Article  Google Scholar 

  • Buendia, M.A. (1992). Hepatitis B virions and hepatocellular carcinoma. Advances in Cancer Research 59: 167–226.

    Article  Google Scholar 

  • Carman, W.F., M.R. Jacyna, S. Hadziyannis, P. Karayiannis, M.J. McGarvey, A. Makris and H.C. Thomas (1989). Mutation preventing formation of hepatitis B e antigen in patients with chronic hepatitis B infection. Lancet 2: 588–591.

    Article  Google Scholar 

  • Chang, C., G. Enders, R. Sprengel, N. Peters, H.E. Varmus and D. Ganem (1987). Expression of the precore region of an avian hepatitis B virus is not required for viral replication. Journal of Virology 61: 3322–3325.

    Google Scholar 

  • Chen, H.S., M.C. Kew, W.E. Hornbuckle, B.C. Tennant, P.J. Cote, J.L. Gerin, R.H. Purcell and R.H. Miller (1992). The precore gene of the woodchuck hepatitis virus genome is not essential for viral replication in the natural host. Journal of Virology 66: 5682–5684.

    Google Scholar 

  • Demongeot, J., M. Kaufman and R. Thomas (2000). Positive feedback circuits and memory. Comptes Rendus de l'Académie des Sciences, Paris. Sciences de la vie/Life Sciences 323: 69–79.

    Google Scholar 

  • Ganem, D. (1996). Hepadnaviridae and their replication. In: B.N. Fields, D.M. Knipe and P.M. Howley (eds), 3rd Ed. Virology. pp. 2703–2737. Lippincott-Raven, New-York.

    Google Scholar 

  • Gil-Torregrosa, B.C., A.R. Castaño and M. Del Val (1998). Major histocompatibility complex class I viral antigen processing in the secretory pathway defined by the trans-Golgi network protease furin. Journal of Experimental Medicine 188: 1105–1116.

    Article  Google Scholar 

  • Guidotti, L. G., R. Rochford, J. Chung, M. Shapiro, R. Purcell and F. V. Chisari(1999). Viral clearance without destruction of infected cells during acute HBV infection. Science 284: 825–829

    Article  Google Scholar 

  • Günther, S., L. Fischer, I. Pult, M. Sterneck and H. Will (1999). Naturally occuring variants of hepatitis B virus. Advances in Virus Research 52: 25–137.

    Google Scholar 

  • Hollinger, F.B. (1990). Hepatitis B virus In: B.N. Fields, D.M. Knipe and al. (eds), 2nd Ed. Virology. pp. 2171–2236. Lippincott-Raven, New-York.

    Google Scholar 

  • Magnius, L.O. and J.A. Espmark (1972). New specificities in Australia antigen positive sera distinct from the Le Bouvier determinants. Journal of Immunology 109: 1017–1021.

    Google Scholar 

  • Marchuk, G. I., R. V. Petrov, A. A. Romanyukha and G. A. Bocharov (1991a). Mathematical model of antiviral immune response. I. Data analysis, generalised picture construction and parameters evaluation for hepatitis B. Journal of Theoretical Biology 151: 1–40.

    Google Scholar 

  • Marchuk, G. I., A. A. Romanyukha and G. A. Bocharov (1991b). Mathematical model of antiviral immune response. II. Parameters identification for acute viral hepatitis B. Journal of Theoretical Biology 151:41–70.

    Google Scholar 

  • Martinet-Edelist, C. (1994). A logical description of the evolution of feedback loop systems and its application to rhabdovirus infection. Journal of Biological Systems 2: 55–72.

    Article  Google Scholar 

  • Martinet-Edelist, C. (1999). Dynamical behaviour of viral cycle and identification of steady states. Acta Biotheoretica 47: 267–280.

    Article  Google Scholar 

  • Messageot F., D. Carlier and J.M. Rossignol (1998). The C terminus of the hepatitis B virus e antigen precursor is required for a tunicamycin-sensitive step that promotes efficient secretion of the antigen. Journal of Biological Chemistry 29: 18594–18598.

    Article  Google Scholar 

  • Messageot F., S. Salhi, S. Lainé and J.M. Rossignol (2001). L'antigène e du virus de l'hépatite B (HBe): une protéine encore énigmatique. Virologie 5: 183–193.

    Google Scholar 

  • Okamoto, H., S. Yotsumoto, Y. Akahane, T. Yamanaka, Y. Miyazaki and M. Mayumi (1990). Hepatitis B viruses with precore region defects prevails in persistently infected hosts along with seroconversion to the antibody against e antigen. Journal of Virology 64: 1298–1303.

    Google Scholar 

  • Ou, J.H. (1997). Molecular biology of hepatitis B virus e antigen. Journal of Gastroenterology and Hepatology 12: 5178–5187.

    Google Scholar 

  • Pastoret, P.P., E. Thiry and R. Thomas (1986). Logical description of bovine herpes virus type 1 latent infection. Journal of General Virology 67: 885–897.

    Article  Google Scholar 

  • Raimondo, G., R. Schneider, M. Stemler, V. Smedile, G. Rodino and H. Will (1990a). A new hepatitis B virus variant in a chronic carrier with multiple episodes of viral reactivation and acute hepatitis. Virology 179:64–68.

    Article  Google Scholar 

  • Raimondo, G., M. Stemler, R. Schneider, G. Wildner, G. Squadrito and H. Will (1990b). Latency and reactivation of a precore mutant hepatitis B virus in a chronically infected patient. Journal of Hepatology 11:374–380.

    Article  Google Scholar 

  • Sallie, R. (1997). Hepatitis B virus replication and mutation are autoregulated by interactions between surface antigen and HBeAg and the HBV DNA polymerase: a functional model with therapeutic implications. Medical Hypotheses 48: 1–10.

    Article  Google Scholar 

  • Scaglioni, P.P., M. Melegari and J.R. Wands (1997). Post-transcriptional regulation of hepatitis B virus replication by the precore protein. Journal of Virology 71: 345–353.

    Google Scholar 

  • Sitterlin, D., P. Tiollais and C. Transy (2000), Le rôle de la protéine X dans le cycle infectieux des hepadnavirus de mammifères. Virologie 4: 217–227.

    Google Scholar 

  • Snoussi, E.H. (1989). Qualitative dynamics of piecewise linear differential equations: a discrete mapping approach. Dynamics and Stability of Systems. 4: 189–207.

    Google Scholar 

  • Snoussi, E.H. and R. Thomas (1993). Logical identification of all steady states: the concept of feedback loop characteristic states. Bulletin of Mathematical Biology 55: 973–991.

    Google Scholar 

  • Thieffry, D. and R. Thomas (1995). Dynamical behaviour of biological regulatory networks.-II Immunity control in bacteriophage lambda. Bulletin of Mathematical Biology 57: 277–297.

    Google Scholar 

  • Thieffry, D. and R. Thomas (1998). Qualitative analysis of gene networks. In: R. B. Altman, A. K. Dunker, L. Hunter and T. E. Klein (Ed.), Pacific symposium on Biocomputing 98: 77–88. World Scientific, Singapore, New Jersey, London, Hong Kong.

    Google Scholar 

  • Thomas, R. (1973). Boolean formalization of genetic control circuits. Journal of Theoretical Biology 42: 563–585.

    Article  Google Scholar 

  • Thomas, R. (1978). Logical analysis of system comprising feedback loops. Journal of Theoretical Biology 73: 631–656.

    Article  Google Scholar 

  • Thomas, R. (1983). Logical description, analysis and synthesis of biological and other networks comprising feedback loops. Advances in Chemical Physics 55: 247–282.

    Google Scholar 

  • Thomas, R. (1993). Logical identification of all steady states. In: J. Demongeot and V. Capasso (Ed.), Mathematics applied to Biology and Medicine, pp. 345–357. Wuerz Publishing Ltd, Winnipeg, Canada.

    Google Scholar 

  • Thomas, R. and R. d'Ari (1990). Biological Feedback. CRC Press, Boca Raton, Ann Arbor, Boston.

    Google Scholar 

  • Thomas, R. and M. Kaufman (2001a). Multistationarity, the basis of cell differentiation and memory. I. Structural conditions of multistationarity and other non trivial behavior. Chaos 11: 170–179.

    Article  Google Scholar 

  • Thomas, R. and M. Kaufman (2001b). Multistationarity, the basis of cell differentiation and memory. II. Logical analysis of regulatory networks in terms of feedback circuits. Chaos 11: 180–195.

    Article  Google Scholar 

  • Thomas, R. and D. Thieffry (1995). Les boucles de rétroaction, rouages des réseaux de régulation biologiques. Médecine/Sciences 11: 189–197.

    Google Scholar 

  • Tong, S.P., J.S. Li, L. Vitviski and C. Trépo (1990). Active hepatitis B virus replication in the presence of anti-HBe is associated with viral variants containing an inactive pre-C region. Virology 191: 237–245.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martinet-Edelist, C. Feedback Circuits in Hepatitis B Virus Infection. Acta Biotheor 51, 245–263 (2003). https://doi.org/10.1023/B:ACBI.0000003982.82499.38

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:ACBI.0000003982.82499.38

Keywords

Navigation