Skip to main content
Log in

Zeta Regularizations

  • Published:
Acta Applicandae Mathematica Aims and scope Submit manuscript

Abstract

We survey our work on various generalizations of the usual zeta regularized product and their applications. For construction of functions having a certain invariance and a given set of zeros, so-called the zeta regularization method is quite useful. We exhibit several examples and discuss some questions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aomoto, K.: On the complex Selberg integral, Quart. J. Math. Oxford 38 (1987), 385–399.

    Google Scholar 

  2. Andrews, G. E., Askey, R. and Roy, R.: Special Functions, Encyclopedia Math. Appl. 71, Cambridge Univ. Press, Cambridge, 1999.

    Google Scholar 

  3. Barnes, E. W.: On the theory of the multiple gamma functions, Trans. Cambridge Philos. Soc. 19 (1904), 374–425.

    Google Scholar 

  4. Cartier, P. and Voros, A.: Une nouvelle interprétation de la formule de trace de Selberg, In: Grothendieck Festschrift, Vol. II, Birkhäuser, 1990, pp. 1–67.

    Google Scholar 

  5. Casimir, H.: On the attraction between two perfectly conducting plates, Proc. Kon. Ned. Acad. Wetenschap 34 (1948), 793–795.

    Google Scholar 

  6. Cohen, H. and Lenstra, H. W.: Heuristics on class groups of number fields, In: Lecture Notes in Math. 1068, Springer, New York, 1983, pp. 33–62.

    Google Scholar 

  7. Cramér, H.: Studien über die Nullstellen der Riemannschen Zetafunktion, Math. Z. 4 (1919), 104–130.

    Google Scholar 

  8. Deninger, C.: On the-factors attached to motives, Invent. Math. 104 (1991), 245–261.

    Google Scholar 

  9. Deninger, C.: Local L-factors of motives and regularized determinants, Invent. Math. 107 (1992), 135–150.

    Google Scholar 

  10. Elizalde, E., Odintsov, S. D., Romeo, A., Bytsenko, A. A. and Zerbini, S.: Zeta Regularization Techniques with Applications, World Scientific, Singapore, 1994.

    Google Scholar 

  11. Hirano, M.: On Cartier-Voros type Selberg trace formula for congruence subgroups of PSL(2, ℝ), Proc. Japan Acad. Ser. A Math. Sci. 71(7) (1995), 144–147.

    Google Scholar 

  12. Hirano, M.: On theta type functions associated with the zeros of the Selberg zeta functions, Manuscripta Math. 92 (1997), 87–105.

    Google Scholar 

  13. Hirano, M., Kurokawa, N. and Wakayama, M.: Half zeta functions, J. Ramanujan Math. Soc. 18 (2003), 1–15.

    Google Scholar 

  14. Hölder, O.: Ueber eine transcendente Function, In: Göttingen Nachrichten Nr.16, 1886, pp. 514–522.

    Google Scholar 

  15. Illies, G.: Regularized products and determinants, Comm. Math. Phys. 220 (2001), 69–94.

    Google Scholar 

  16. Kaneko, M., Kurokawa, N. and Wakayama, M.: A variation of Euler's approach to values of the Riemann zeta function, Kyushu J. Math. 57 (2003), 175–192.

    Google Scholar 

  17. Kimoto, K., Kurokawa, N., Sonoki, C. and Wakayama, M.: Zeta regularizations and q-analogue of ring sine functions, Kyushu J. Math. 57 (2003), 197–215.

    Google Scholar 

  18. Kimoto, K., Kurokawa, N., Sonoki, C. and Wakayama, M.: Some examples of generalized zeta regularized products, Preprint, 2002.

  19. Kimoto, K. and Wakayama, M.: Remarks on zeta regularized products, Internat. Math. Res. Notices 17 (2004), 855–875.

    Google Scholar 

  20. Kurokawa, N.: Multiple sine functions and Selberg zeta functions, Proc. Japan Acad. Ser. A Math. Sci. 67 (1991), 51–64.

    Google Scholar 

  21. Kurokawa, N. and Koyama, S.: Multiple sine functions, Forum Math. 15 (2003), 839–876.

    Google Scholar 

  22. Kurokawa, N., Müller-Stüler, E. M., Ochiai, H. and Wakayama, M.: Kronecker's Jugendtraum and ring sine functions, J. Ramanujan Math. Soc. 17 (2002), 211–220.

    Google Scholar 

  23. Kurokawa, N., Matsuda, S. and Wakayama, M.: Gamma factors and functional equations of higher Riemann zeta functions, Preprint, 2003.

  24. Kurokawa, N., Ochiai, H. and Wakayama, M.: Zetas and multiple trigonometry, J. Ramanujan Math. Soc. 17 (2002), 101–113.

    Google Scholar 

  25. Kurokawa, N., Ochiai, H. and Wakayama, M.: Absolute derivations and zeta functions, Documenta Math. (Extra Volume Kato) (2003), 563–582.

  26. Kurokawa, N. and Wakayama, M.: Casimir effects on Riemann surfaces, Proc. Kon. Ned. Acad. Wetenschap (Indag. Mathem., N.S.) 13(1) (2002), 63–75.

    Google Scholar 

  27. Kurokawa, N. and Wakayama, M.: On ζ(3), J. Ramanujan Math. Soc. 16 (2001), 205–214.

    Google Scholar 

  28. Kurokawa, N. and Wakayama, M.: A generalization of Lerch's formula, to appear in Czech Math. J.

  29. Kurokawa, N. and Wakayama, M.: Zeta extensions, Proc. Japan Acad. Ser. A Math. Sci. 78 (2002), 126–130.

    Google Scholar 

  30. Kurokawa, N. and Wakayama, M.: Generalized zeta regularizations, quantum class number formulas, and Appell's O-functions, to appear in The Ramanujan J.

  31. Kurokawa, N. and Wakayama, M.: Higher Selberg zeta functions, To appear in Comm. Math. Phys.

  32. Kurokawa, N. and Wakayama, M.: Certain families of elliptic functions defined by q-series, to appear in The Ramanujan J.

  33. Kurokawa, N. and Wakayama, M.: Extremal values of double and triple trigonometric functions, to appear in Kyushu J. Math.

  34. Kurokawa, N. and Wakayama, M.: Finite ladders in multiple trigonometry, Preprint, 2003.

  35. Kurokawa, N. and Wakayama, M.: Zeta regularized products of multiple trigonometric functions, Preprint, 2003.

  36. Kurokawa, N. and Wakayama, M.: On q-basic multiple gamma functions, Internat. J. Math. 14 (2003), 885–902.

    Google Scholar 

  37. Kurokawa, N. and Wakayama, M.: Absolute tensor products, Internat. Math. Res. Notices 5 (2004), 249–260.

    Google Scholar 

  38. Kurokawa, N. and Wakayama, M.: Selberg zeta functions for a complex torus and arithmetic distributions, Preprint, 2003.

  39. Kurokawa, N. and Wakayama, M.: Analyticity of polylogarithmic Euler products, Rend. Ciecolo Math. di Palermo 52(2) (2003), 382–388.

    Google Scholar 

  40. Landau, E. and Walfisz, A.: Über die Nichtfortsetzbarkeit einiger durch Dirichletsche Reihen definierter Funktionen, Rend. di Palermo 44 (1919), 82–86.

    Google Scholar 

  41. Lang, S.: Elliptic Functions, Addison Wesley, 1970.

  42. Lerch, M.: Dalši studie v oboru Malmsténovských řad, Rozpravy České Akad. 3(28) (1894), 1–61.

    Google Scholar 

  43. Mimachi, K. and Yoshida, M.: Intersection numbers of twisted cycles and the correlation functions of the conformal field theory, Comm. Math. Phys. 234 (2003), 333–358.

    Google Scholar 

  44. Ray, D. and Singer, I.: Analytic torsion for analytic manifolds, Ann. Math. 98 (1973), 154–177.

    Google Scholar 

  45. Ruijsenaars, S. N. M.: Special functions defined by analytic difference equations, In: J. Bustoz, M. Ismail and S. Suslov (eds), Proc. Tempe NATO Adv. Stu. Inst. Special Functions 2000 NATO Sci. Ser., Vol. 30, Kluwer Acad. Publ., Dordrecht, 2001, pp. 281–333.

    Google Scholar 

  46. Selberg, A.: On the estimation of Fourier coefficients of modular forms, In: Proc. Sympos. Pure Math., Vol. VIII, Amer. Math. Soc., 1965, pp. 1–15.

    Google Scholar 

  47. Shintani, T.: A proof of the classical Kronecker limit formula, Tokyo J. Math. 3 (1980), 191–199.

    Google Scholar 

  48. Shintani, T.: On a Kronecker limit formula for real quadratic fields, J. Fac. Sci. Univ. Tokyo 24 (1977), 167–199.

    Google Scholar 

  49. Stark, H. M.: Class fields and modular forms of weight one, In: Lecture Notes in Math. 601, Springer, New York, 1977, pp. 277–287.

    Google Scholar 

  50. Stark, H. M.: L-functions at s = 1 (IV), Adv. Math. 35 (1980), 197–235.

    Google Scholar 

  51. Titchmarsh, E. C.: The Theory of the Riemann Zeta-function, 2nd edn.

  52. Voros, A.: Spectral functions, special functions and the Selberg zeta functions, Comm. Math. Phys. 110 (1987), 439–465.

    Google Scholar 

  53. Wakayama, M.: The relation between the ç-invariant and the spin representation in terms of the Selberg zeta function, Adv. Stud. Pure Math. 21 (1992), 71–86.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurokawa, N., Wakayama, M. Zeta Regularizations. Acta Applicandae Mathematicae 81, 147–166 (2004). https://doi.org/10.1023/B:ACAP.0000024207.37694.3b

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:ACAP.0000024207.37694.3b

Navigation