Skip to main content
Log in

Structures of Boson and Fermion Fock Spaces in the Space of Symmetric Functions

Acta Applicandae Mathematica Aims and scope Submit manuscript

Cite this article

Abstract

We realize the Weil representation of infinite-dimensional symplectic group and spinor representation of infinite-dimensional group GL by linear operators in the space of symmetric functions in infinite number of variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Berezin, F. A.: Method of Second Quantization, Nauka, Moscow, 1965; English transl.: Academic Press, 1966.

    Google Scholar 

  2. Berezin, F. A.: Some remarks on representations of commutation relations, Uspekhi Mat. Nauk 24(4) (1969), 65–88; English transl.: Russian Math. Surveys.

    Google Scholar 

  3. Dunford, N. and Schwartz, J. T.: Linear Operators, Vol. 2, 1963.

  4. Feigin, B. A. and Fuks, D. B.: Skew-symmetric invariant differential operations on the line and Verma modules over the Virasoro algebra, Funktsional. Anal. i Prilozhen. 16(2) (1982), 47–63; English transl.: Funct. Anal. Appl. 16 (1982), 114–126.

    Google Scholar 

  5. Foth, T. and Neretin, Yu. A.: Zak transform, Weil representation, and integral operators with theta kernels, to appear, preprint version is available via http://www.arXiv.org/abs/math.CA/ 0311080.

  6. Frenkel, I. B.: Two constructions of affine Lie algebra representations and boson-fermion correspondence in conformal field theory, J. Funct. Anal. 44 (1981), 259–327.

    Google Scholar 

  7. Gross, K. I. and Richards, D. S. P.: Total positivity, spherical series, and hypergeometric functions of matrix argument, J. Approx. Theory 59 (1989), 224–246.

    Google Scholar 

  8. Hua Loo Keng: Harmonic Analysis of Functions of Several Complex Variables in Classical Domains, Science Press, Beijing, 1958 (Chinese); Russian transl.: Inostrannaya Literatura, Moscow, 1959; English transl.: Amer. Math. Soc., Providence, 1963.

    Google Scholar 

  9. Kerov, S. V.: Generalized Hall-Littlewood symmetric functions and orthogonal polynomials, Advances in Soviet Math. 9 (1992), 67–94.

    Google Scholar 

  10. Macdonald, I. G.: Symmetric Functions and Hall Polynomials, 2nd edn, Clarendon Press, Oxford, 1995.

    Google Scholar 

  11. Miwa, T., Jimbo, M. and Date, E.: Mathematics of Solitons, Cambridge, 2000.

  12. Nazarov, M., Neretin, Yu. A. and Olshanski, G. I.: Semigroups engendres par la representations de Weil du groupe simplectque de dimension infinie, C. R. Acad. Sci. Paris Ser. A 309 (1988), 443–446.

    Google Scholar 

  13. Neretin, Yu. A.: On a semigroup of operators in boson Fock space, Funktsional. Anal. i Prilozhen. 24(2) (1990), 63–73. English transl.: Funct. Anal. Appl. 24 (1990), 135–144.

    Google Scholar 

  14. Neretin, Yu. A.: Categories of Symmetries and Infinite Dimensional Groups, Clarendon Press, Oxford, 1996.

    Google Scholar 

  15. Neretin, Yu. A.: On the correspondence between boson Fock space and L 2 with respect to the Poisson measure, Mat. Sb. 188(11) (1997), 19–50; English transl.: Math. Sb. 188 (1997), 1587–1616.

    Google Scholar 

  16. Neretin, Yu. A.: Supercomplete bases in the space of symmetric functions, Funktsional. Anal. i Prilozhen. 32(1) (1998), 12–28; English transl.: Funct. Anal. Appl. 32 (1998), 10–22.

    Google Scholar 

  17. Neretin, Yu. A.: Matrix balls, radial analysis of Berezin kernels and hypergeometric determinants, Moscow Math. J. 1 (2001), 157–220. Preprint version is available via http://xxx.arXiv.org/abs/math/0012220.

    Google Scholar 

  18. Olshanskii, G. I.: Weil representations and norms of Gauss operators, Funktsional. Anal. i Prilozhen. 28(1) (1994), 51–67; English transl.: Funct. Anal. Appl. 28 (1994), 42–54.

    Google Scholar 

  19. Pressley, A. and Segal, G.: Loop Groups, Clarendon Press, 1986.

  20. Shale, D.: Linear symmetries of free boson fields, Trans. Amer. Math. Soc. 103 (1962), 149–167.

    Google Scholar 

  21. Vershik, A. M. and Tsilevich, N.: Fock factorizations, and decompositions of the L 2 spaces over general Levy processes, Uspekhi Mat. Nauk 58(3) (2003), 3–50; English translation is available via http://xxx.arXiv.org /abs/math.PR/0304282.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Neretin, Y.A. Structures of Boson and Fermion Fock Spaces in the Space of Symmetric Functions. Acta Applicandae Mathematicae 81, 233–268 (2004). https://doi.org/10.1023/B:ACAP.0000024202.14755.99

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:ACAP.0000024202.14755.99

Navigation