Abstract
We realize the Weil representation of infinite-dimensional symplectic group and spinor representation of infinite-dimensional group GL by linear operators in the space of symmetric functions in infinite number of variables.
This is a preview of subscription content,
to check access.References
Berezin, F. A.: Method of Second Quantization, Nauka, Moscow, 1965; English transl.: Academic Press, 1966.
Berezin, F. A.: Some remarks on representations of commutation relations, Uspekhi Mat. Nauk 24(4) (1969), 65–88; English transl.: Russian Math. Surveys.
Dunford, N. and Schwartz, J. T.: Linear Operators, Vol. 2, 1963.
Feigin, B. A. and Fuks, D. B.: Skew-symmetric invariant differential operations on the line and Verma modules over the Virasoro algebra, Funktsional. Anal. i Prilozhen. 16(2) (1982), 47–63; English transl.: Funct. Anal. Appl. 16 (1982), 114–126.
Foth, T. and Neretin, Yu. A.: Zak transform, Weil representation, and integral operators with theta kernels, to appear, preprint version is available via http://www.arXiv.org/abs/math.CA/ 0311080.
Frenkel, I. B.: Two constructions of affine Lie algebra representations and boson-fermion correspondence in conformal field theory, J. Funct. Anal. 44 (1981), 259–327.
Gross, K. I. and Richards, D. S. P.: Total positivity, spherical series, and hypergeometric functions of matrix argument, J. Approx. Theory 59 (1989), 224–246.
Hua Loo Keng: Harmonic Analysis of Functions of Several Complex Variables in Classical Domains, Science Press, Beijing, 1958 (Chinese); Russian transl.: Inostrannaya Literatura, Moscow, 1959; English transl.: Amer. Math. Soc., Providence, 1963.
Kerov, S. V.: Generalized Hall-Littlewood symmetric functions and orthogonal polynomials, Advances in Soviet Math. 9 (1992), 67–94.
Macdonald, I. G.: Symmetric Functions and Hall Polynomials, 2nd edn, Clarendon Press, Oxford, 1995.
Miwa, T., Jimbo, M. and Date, E.: Mathematics of Solitons, Cambridge, 2000.
Nazarov, M., Neretin, Yu. A. and Olshanski, G. I.: Semigroups engendres par la representations de Weil du groupe simplectque de dimension infinie, C. R. Acad. Sci. Paris Ser. A 309 (1988), 443–446.
Neretin, Yu. A.: On a semigroup of operators in boson Fock space, Funktsional. Anal. i Prilozhen. 24(2) (1990), 63–73. English transl.: Funct. Anal. Appl. 24 (1990), 135–144.
Neretin, Yu. A.: Categories of Symmetries and Infinite Dimensional Groups, Clarendon Press, Oxford, 1996.
Neretin, Yu. A.: On the correspondence between boson Fock space and L 2 with respect to the Poisson measure, Mat. Sb. 188(11) (1997), 19–50; English transl.: Math. Sb. 188 (1997), 1587–1616.
Neretin, Yu. A.: Supercomplete bases in the space of symmetric functions, Funktsional. Anal. i Prilozhen. 32(1) (1998), 12–28; English transl.: Funct. Anal. Appl. 32 (1998), 10–22.
Neretin, Yu. A.: Matrix balls, radial analysis of Berezin kernels and hypergeometric determinants, Moscow Math. J. 1 (2001), 157–220. Preprint version is available via http://xxx.arXiv.org/abs/math/0012220.
Olshanskii, G. I.: Weil representations and norms of Gauss operators, Funktsional. Anal. i Prilozhen. 28(1) (1994), 51–67; English transl.: Funct. Anal. Appl. 28 (1994), 42–54.
Pressley, A. and Segal, G.: Loop Groups, Clarendon Press, 1986.
Shale, D.: Linear symmetries of free boson fields, Trans. Amer. Math. Soc. 103 (1962), 149–167.
Vershik, A. M. and Tsilevich, N.: Fock factorizations, and decompositions of the L 2 spaces over general Levy processes, Uspekhi Mat. Nauk 58(3) (2003), 3–50; English translation is available via http://xxx.arXiv.org /abs/math.PR/0304282.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Neretin, Y.A. Structures of Boson and Fermion Fock Spaces in the Space of Symmetric Functions. Acta Applicandae Mathematicae 81, 233–268 (2004). https://doi.org/10.1023/B:ACAP.0000024202.14755.99
Issue Date:
DOI: https://doi.org/10.1023/B:ACAP.0000024202.14755.99