Skip to main content
Log in

Control Methods and the Performance of the Robotic Testing System for Human Musculoskeletal Joints

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Biomechanical testing of human musculoskeletal joints not only requires qualified testing machines and devices, but also needs an excellent control method to obtain better experimental results. In this paper, we take the human functional spinal unit (FSU) as an example to study how to improve the performance of the robotic testing system. First, the mechanical characteristics of FSU are described and the simplified model (rigid body–spring system) for the specimen is given. Because the location of the center of rotation (COR) of the specimen affects the performance of the system, a comprehensive analysis on the location of COR is carried out. The performance of the robotic testing system can also be improved through the improvement of the control method. Two control methods have been proposed in this paper: one is the improved hybrid control, the other is fuzzy logic control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Admas, M., and W. Hutton. The relevance of torsion to the mechanical derangement of the lumbar spine. Spine 6:241–248, 1981.

    Google Scholar 

  2. Bryant, J. T., H. W. Wevers, and P. J. Lowe. One parameter model for error in instantaneous center of rotation measurements. J. Biomech. 17:317–323, 1984.

    Google Scholar 

  3. Challis, J. H. Estimation of the finite center of rotation in planar movements. Med. Eng. Phys. 23:227–233, 2001.

    Google Scholar 

  4. Crawford, N. R., A. G. U. Brantley, C. A. Diclman, and E. J. Koeneman. An apparatus for applying pure nonconstraining moments to spine segments in vitro. Spine 20:2097–2100, 1995.

    Google Scholar 

  5. Crisco, J. J., III, X. Chen, M. M. Panjabi, and S. W. Wolfe. Optimal marker placement for calculating the instantaneous center of rotation. J. Biomech. 27:1183–1187, 1994.

    Google Scholar 

  6. Doehring, T. C. Delineation of In-Vitro Lumbar Spine Structural Properties Using a Robotic/UFS Testing System with Hybrid Control: Experiments and Analytical Simulations Dissertation. Pittsburgh, PA: University of Pittsburgh, 2000.

    Google Scholar 

  7. Edwaeds, W. T., W. C. Hayes, and J. Posner. Variation of lumbar spine stiffness with load. J. Biomech. Eng. 109:35–41, 1987.

    Google Scholar 

  8. Gilbertson, L. G., T. C. Doehring, and J. D. Kang. New methods to study lumbar spine biomechanics: Delineation of in vitro load-displacement characteristics by using a robotic/UFS testing system with hybrid control. Oper. Tech. Orthop. 10:246–253, 2000.

    Google Scholar 

  9. Gilbertson, L. G., T. C. Doehring, G. A. Livesay, T. W. Rudy, J. D. Kang, and S. L.-Y. Woo. Improvement of accuracy in a high-capacity, six degree-of-freedom load cell: Application to robotic testing of musculoskeletal joints. Annu. Biomed. Eng. 27:839–843, 1999.

    Google Scholar 

  10. Goel, V. K., T. A. Nye, C. R. Clark, K. Nishiyama, and J. Weinstein. A technique to evaluate an internal spinal device by use of the selspot system: An application to luque closed loop. Spine 12:150–159, 1987.

    Google Scholar 

  11. Goel, V. K., D. G. Wilder, M. H. Pope, and W. T. Edwards. Controversy: Biomechanical testing of the spine load-controlled versus displacement controlled analysis. Spine 20:2354–2357, 1995.

    Google Scholar 

  12. Halvorsen, K., M. Lesser, and A. Lundberg. A new method for estimating the axis of rotation and the center of rotation. J. Biomech. 32:1221–1227, 1999.

    Google Scholar 

  13. Hunt, K. J., M. Munih, and N. de Donaldson. Feedback control of unsupported standing in paraplegia. Part I: Optimal control approach. IEEE Trans. Rehabil. Eng. 5:331–340, 1997.

    Google Scholar 

  14. Kruse, R., J. Gebhardt, and F. Klawonn. Foundations of Fuzzy Systems. New York: Wiley, 1994.

    Google Scholar 

  15. Kumar, N., S. Kukreti, M. Ishaque, D. K. Sengupta, and R. C. Mulholland. Functional anatomy of the deer spine: An appropriate biomechanical model for the human spine. Anat. Rec. 266:108–117, 2002.

    Google Scholar 

  16. Kunz, D. N., R. P. McCabe, T. A. Zdeblick, and R. Jr. Vanderby. A multi-degree of freedom system for biomechanical testing. J. Biomech. Eng. 116:371–373, 1994.

    Google Scholar 

  17. Moeini, S. M., J. E. Lemons, M. J. McCutcheon, and F. J. Molz. Investigation of video techniques for dynamic measurements of relative vertebral-body motion in vitro. Biomed. Instrum. Tech. 30:62–70, 1996.

    Google Scholar 

  18. Norton, H. N. Handbook of Transducers. Englewood Cliffs, NJ: Prentice-Hall Inc., 1989.

    Google Scholar 

  19. Panjabi, M. M., R. A. Brand, and A. A. White. Mechanical properties of the human thoracic spine as shown by three-dimensional load-displacement curves. J. Bone Joint Surg. Am. 58:642–652, 1976.

    Google Scholar 

  20. Patwardhan, A. G., R. M. Havey, K. P. Meade, B. Lee, and B. Dunlap. A follower load increases the load-carrying capacity of the lumbar spine in compression. Spine 24:1003–1009, 1999.

    Google Scholar 

  21. Patyra, M. J., and D. M. Mlynek. Fuzzy Logic Implementation and Applications. New York: Wiley, 1996.

    Google Scholar 

  22. Petroff, N., K. D. Reisinger, and P. A. C. Mason. Fuzzy-control of a hand orthosis for restoring tip pinch, lateral pinch, and cylindrical prehensions to patients with elbow flexion intact. IEEE Trans. Neural Syst. Rehabil. Eng. 9:225–231, 2001.

    Google Scholar 

  23. Riess, J., and J. J. Abbas. Adaptive control of cyclic movements as muscles fatigue using functional neuromuscular stimulation. IEEE Trans. Neural Syst. Rehabil. Eng. 9:326–330, 2001.

    Google Scholar 

  24. Riess, J., and J. J. Abbas. Adaptive neural network control of cyclic movements using functional neuromuscular stimulation. IEEE Trans. Rehabil. Eng. 8:42–52, 2000.

    Google Scholar 

  25. Spiegelman, J. J., and S. L.-Y. Woo, A rigid-body method for finding centers of rotation and angular displacements of planar joint motion. J. Biomech. 20:715–721, 1987.

    Google Scholar 

  26. Spour, C. W., and F. E. Veldpaus. Rigid body motion calculation from spatial coordinates of markers. J. Biomech. 13:391–393, 1980.

    Google Scholar 

  27. Veldpaus, F. E., H. J. Woltring, and L. J. M. G. Dortmans. A least-squares algorithm for the equation transformation from spatial marker coordinates. J. Biomech. 21:45–54, 1988.

    Google Scholar 

  28. Yen, J., R. Langari, and L. A. Zadeh. Industrial Applications of Fuzzy Logic and Intelligent Systems. New York: The Institute of Electrical and Electronics Engineers, Inc., 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tian, L. Control Methods and the Performance of the Robotic Testing System for Human Musculoskeletal Joints. Annals of Biomedical Engineering 32, 889–898 (2004). https://doi.org/10.1023/B:ABME.0000030264.30498.5d

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:ABME.0000030264.30498.5d

Navigation