Skip to main content
Log in

Modeling RBC and Neutrophil Distribution Through an Anatomically Based Pulmonary Capillary Network

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

An anatomically based finite element model of the human pulmonary microcirculation has been created and applied to simulating regional variations in blood flow. A geometric mesh of the capillary network over the surface of a single alveolar sac is created using a Voronoi meshing technique. A pressure-flow relationship that describes blood cell transit is implemented in the network. Regional flow is investigated by imposing gravity-dependent transpulmonary and transmural boundary conditions. Comparisons of red and white blood cell transit times in the upper, mid, and lower lung showed physiologically consistent trends of a decreasing average transit time and an increased homogeneity of transit time distributions as a result of increasing average capillary diameter and flow down the height of a vertical lung. The model was found to reproduce experimentally consistent trends in red blood cell transit times and relative blood flows with respect to lung height. This model enables flow properties and cell transit time behavior in the pulmonary microcirculation under varying conditions, for example in different “zones” of the lung, to be explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Bourke, S. J., and R. A. L. Brewis. Lecture Notes on Respiratory Medicine. Oxford, UK: Blackwell Science, 1998.

    Google Scholar 

  2. Chang, H. K., and M. Paiva. Respiratory Physiology—An Analytical Approach. New York: Marcel Dekker, 1989.

    Google Scholar 

  3. Clough, A. V., S. T. Haworth, C. C. Hanger, J. Wang, D. L. Roerig, J. H. Linehan, and C. A. Dawson. Transit time dispersion in the pulmonary arterial tree. J. Appl. Physiol. 85:565–574, 1998.

    Google Scholar 

  4. Dawant, B., M. Levin, and A. S. Popel. Effect of dispersion of vessel diameters and lengths in stochastic networks—ii modeling of microvascular hematocrit distribution. Microvasc. Res. 31:223–234, 1986.

    Google Scholar 

  5. Denny, E., and R. C. Schroter. A mathematical model for the morphology of the pulmonary acinus. J. Biomech. Eng. 118:210–215, 1996.

    Google Scholar 

  6. Dhadwal, A., B. Wiggs, C. Doerschuk, and R. Kamm. Effects of anatomic variability on blood flow and pressure gradients in the pulmonary circulation. J. Appl. Physiol. 83:1711–1720, 1997.

    Google Scholar 

  7. Fung, Y. C., and S. S. Sobin. Theory of sheet flow in lung alveoli. J. Appl. Physiol. 26:472–488, 1969.

    Google Scholar 

  8. Fung, Y. C., and S. S. Sobin. Pulmonary alveolar blood flow. In: Bioengineering Aspects of the Lung., edited by J. B. West. New York: Marcel Dekker, 1977, pp. 267–359.

    Google Scholar 

  9. Glenny, R. W., H. T. Bernard, H. T. Robertson, and M. P. Hlastala. Gravity is an important but secondary determinant of regional pulmonary blood flow in upright primates. J. Appl. Physiol. 86:623–632, 1999.

    Google Scholar 

  10. Glenny, R. W., W. J. E. Lamm, R. K. Albert, and H. T. Robertson. Gravity is a minor determinant of pulmonary blood flow distribution. J. Appl. Physiol. 72:620–629, 1991.

    Google Scholar 

  11. Glenny, R. W., W. J. E. Lamm, S. L. Bernard, D. An, M. Chornuk, S. L. Pool, W. W. Wagner Jr., M. P. Hlastala, and H. T. Robertson. Physiology of a microgravity environment, selected contribution. J. Appl. Physiol. 89:1239–1248, 2000.

    Google Scholar 

  12. Godbey, P. S., J. A. Graham, R. G. Presson Jr., W. W. Wagner Jr., and T. C. Lloyd Jr. Effect of capillary pressure and lung distension on capillary recruitment. J. Appl. Physiol. 79:1142–1147, 1995.

    Google Scholar 

  13. Guntheroth, W. G., D. L. Luchtel, and I. Kawabori. Pulmonary microcirculation—tubules rather than sheet and post. J. Appl. Physiol. 53:510–515, 1982.

    Google Scholar 

  14. Haefeli-Bleuer B., and E. R. Weibel. Morphometry of the human pulmonary acinus. Anat. Rec. 220:401–414, 1988.

    Google Scholar 

  15. Hanger C. C., W. W. Wagner Jr., S. J. Janke, T. C. Lloyd Jr., and R. L. Capen. Computer simulation of neutrophil transit through the pulmonary capillary bed. J. Appl. Physiol. 74:1647–1652, 1993.

    Google Scholar 

  16. Hogg J. C. Neutrophil kinetics and lung injury. Physiol. Rev. 67:1249–1295, 1987.

    Google Scholar 

  17. Hogg J. C., H. O. Coxson, M. Brumwell, N. Beyers, C. M. Doerschuk, W. MacNee, and Wiggs B. R. Erythrocyte and polymorphonuclear cell transit time and concentration in human pulmonary capillaries. J. Appl. Physiol. 77:1795–1800, 1994.

    Google Scholar 

  18. Hogg J. C., B. A. Martin, S. Lee, and T. McLean. Regional differences in erythrocyte transit in normal lungs. J. Appl. Physiol. 59:1266–1271, 1985.

    Google Scholar 

  19. Hoppin F. G., and J. Hildebrandt. Bioengineering Aspects of the Lung. New York: Marcel Dekker, 1977.

    Google Scholar 

  20. Huang Y. C., C. M. Doerschuk, and R. D. Kamm. Computational modeling of RBC and neutrophil transit through the pulmonary capillaries. J. Appl. Physiol. 90:545–564, 2001.

    Google Scholar 

  21. Lamm W. J. E., and R. K. Albert. Effect of zonal conditions and posture on pulmonary blood flow distribution to subpleural and interior lung. J. Appl. Physiol. 88:120–125, 2000.

    Google Scholar 

  22. MacNee W., B. A. Martin, B. R. Wiggs, A. S. Belzberg, and J. C. Hogg. Regional pulmonary transit times in humans. J. Appl. Physiol. 66:844–850, 1989.

    Google Scholar 

  23. Okabe A., B. Boots, and K. Sugihara. Spatial Tessellations: Concepts and Applications of Voronoi Diagrams. Chichester, England: Wiley, 1992.

    Google Scholar 

  24. Okada O., R. G. Presson Jr., P. S. Godbey, R. L. Capen, and W. W. Wagner Jr. Temporal capillary perfusion patterns in single alveolar walls of intact dogs. J. Appl. Physiol. 76:380–386, 1994.

    Google Scholar 

  25. Permutt, S., B. Bromberger-Barnes, and H. N. Bane. Alveolar pressure, pulmonary venous pressure, and the vascular waterfall. Med. Thorac. 19:239–260, 1962.

    Google Scholar 

  26. Presson, R. G., Jr., J. A. Graham, C. C. Hanger, P. S. Godbey, S. A. Gebb, R. W. Sidner, R. W. Glenny, and W. W. Wagner Jr. Distribution of pulmonary capillary red blood cell transit times. J. Appl. Physiol. 79:382–388, 1995.

    Google Scholar 

  27. Presson, R. G., Jr., C. C. Hanger, P. S. Godbey, J. A. Graham, T. C. Lloyd, and W. W. Wagner Jr. Effect of increasing flow on distribution of pulmonary capillary transit times. J. Appl. Physiol. 76:1701–1711, 1994.

    Google Scholar 

  28. Presson, R. G., Jr., T. M. Todoran, B. J. D. Witt, I. F. McMurtry, and W. W. Wagner Jr. Capillary recruitment and transit time in the rat lung. J. Appl. Physiol. 83:543–549, 1997.

    Google Scholar 

  29. Pries A. R., T. W. Secomb, P. Gaehtgens, and J. F. Gross. Blood flow in microvascular networks—experiments and simulation. Circ. Res. 67:826–834, 1990.

    Google Scholar 

  30. Prisk G. K., M. Paiva, and J. B. West (eds). Gravity and the Lung—Lessons from Microgravity. New York: Marcel Dekker, 2001.

    Google Scholar 

  31. Skalak R., and S. Chien. Handbook of Bioengineering. New York: McGraw-Hill, 1987.

    Google Scholar 

  32. Staub N. C., and E. L. Schultz. Pulmonary capillary length in dog, cat and rabbit. Respir. Physiol. 5:371–378, 1968.

    Google Scholar 

  33. Terashima T., M. E. Klut, D. English, J. Hards, J. C. Hogg, and S. F. van Eeden. Cigarette smoking causes sequestration of polymorphonuclear leukocytes released from the bone marrow in lung microvessels. Am. J. Respir. Cell. Mol. Biol. 20:171–177, 1999.

    Google Scholar 

  34. Wagner W. W., Jr., L. P. Latham, W. L. Hanson, S. E. Hofmeister, and R. L. Capen. Vertical gradient of pulmonary capillary transit times. J. Appl. Physiol. 61:1270–1274, 1986.

    Google Scholar 

  35. Weibel E. R. Morphometry of the Human Lung. Berlin: Springer-Verlag, 1963.

    Google Scholar 

  36. Weibel E. R. The Pathway for Oxygen—Structure and Function of the Mammalian Respiratory System. Cambridge, MA: Harvard University Press, 1984.

    Google Scholar 

  37. West J. B. Respiratory Physiology—The Essentials. Philadelphia, PA: Williams and Wilkins, 1995.

    Google Scholar 

  38. West J. B., C. T. Dollery, and A. Naimark. Distribution of blood flow in isolated lung; relation to vascular and alveolar pressures. J. Appl. Physiol. 19:713–724, 1964.

    Google Scholar 

  39. Wiggs B. R. D., W. M. English, N. A. Quinlan, J. C. Doyle, J. C. Hogg, and C. M. Doerschuk. Contributions of capillary pathway size and neutrophil transit through rabbit lung. J. Appl. Physiol. 93:463–470, 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burrowes, K.S., Tawhai, M.H. & Hunter, P.J. Modeling RBC and Neutrophil Distribution Through an Anatomically Based Pulmonary Capillary Network. Annals of Biomedical Engineering 32, 585–595 (2004). https://doi.org/10.1023/B:ABME.0000019178.95185.ad

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:ABME.0000019178.95185.ad

Navigation