Skip to main content
Log in

Novel Noncontact Catheter System for Endocardial Electrical and Anatomical Imaging

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The study objective was to integrate noncontact mapping and intracardiac echocardiography (ICE) in a single catheter system that enables both electrical and anatomical imaging of the endocardium. We developed a catheter system on the basis of a 9-F sheath that carried a coaxial 64-electrode lumen-probe on the outside and a central ICE catheter (9 F, 9 MHz) on the inside. The sheath was placed in the right atrium (RA) of 3 dogs, and in the left ventricle (LV) of 3 other dogs. To construct cardiac anatomy, the ICE catheter was pulled back over several beats inside the sheath starting from the tip and two-dimensional tomographic images were continuously acquired. To recover endocardial electrograms, the probe was advanced over the sheath and single-beat noncontact electrograms were simultaneously recorded. Endocardial contact electrodes were placed at select sites for validation as well as for pacing. Three-dimensional electrical–anatomical images reconstructed during sinus and paced rhythms correctly associated RA and LV activation sequences with underlying endocardial anatomy (overall activation error = 3.4±3.2 ms; overall spatial error = 8.0±3.5 mm). Therefore, accurate fusion of electrical imaging with anatomical imaging during catheterization is feasible. Integrating single-beat noncontact mapping with ICE provides detailed, three-dimensional electrical–anatomical images of the endocardium, which may facilitate management of arrhythmias.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Berrier, K. L., D. C. Sorensen, and D. S. Khoury. Solving the inverse problem of electrocardiography using a Duncan and Horn formulation of the Kalman filter. IEEE Trans. Biomed. Eng. 51:507–515, 2004.

    Google Scholar 

  2. Brebbia, C. A., and J. Dominguez. Boundary Elements. An Introductory Course. Computational Mechanics Publications: Southampton and Boston, 1989, pp. 45–132.

    Google Scholar 

  3. Colli-Franzone, P., L. Guerri, B. Taccardi, and C. Viganotti. Finite element approximation of regularized solutions of the inverse potential problem of electrocardiography and applications to experimental data. Calcolo 22:91–186, 1985.

    Google Scholar 

  4. De Groot, N. M. S., M. Bootsma, E. T. Van Der Velde, and M. J. Schalij. Three-dimensional catheter positioning during radiofrequency ablation in patients: First application of a real-time position management system. J. Cardiovasc. Electrophysiol. 11:1183–1192, 2000.

    Google Scholar 

  5. Derfus, D. L., T. C. Pilkington, E. W. Simpson, and R. E. Ideker. A comparison of measured and calculated intracavitary potentials for electrical stimuli in the exposed dog heart. IEEE Trans. Biomed. Eng. 39:1192–1206, 1992.

    Google Scholar 

  6. Durrer, D., R. T. van Dam, G. E. Freud, M. J. Janse, F. L. Meijler, and R. C. Arzbaecher. Total excitation of the isolated human heart. Circ. Res. 41:899–912, 1970.

    Google Scholar 

  7. Eldar, M., A. P. Fitzpatrick, D. Ohad, M. F. Smith, S. Hsu, J. G. Whayne, Z. Vered, Z. Rotstein, T. Kordis, D. K. Swanson, M. Chin, M. M. Scheinman, M. D. Lesh, and A. J. Greenspon. Percutaneous multielectrode endocardial mapping during ventricular tachycardia in the swine model. Circulation 94:1125–1130, 1996.

    Google Scholar 

  8. Gepstein, L., G. Hayam, and S. A. Ben-Haim. A novel method for nonfluoroscopic catheter-based electroanatomical mapping of the heart. In vitro and in vivo accuracy results. Circulation 95:1611–1622, 1997.

    Google Scholar 

  9. Gulrajani, R. M. The forward and inverse problems of electrocardiography. IEEE Eng. Med. Biol. 17:84–122, 1998.

    Google Scholar 

  10. Jackman, W. M., K. J. Beckman, J. H. McClelland, X. Wang, K. J. Friday, C. A. Roman, K. P. Moulton, N. Twidale, A. Hazlitt, M. I. Prior, J. Oren, E. D. Overholt, and R. Lazzarra. Treatment of supraventricular tachycardia due to atrioventricular nodal reentry by radiofrequency catheter ablation of slow-pathway conduction. N. Engl. J. Med. 327:313–318, 1992.

    Google Scholar 

  11. Jenkins, K. J., E. P. Walsh, S. D. Colan, D. M. Bergau, J. P. Saul, and J. E. Lock. Multipolar endocardial mapping of the right atrium during cardiac catheterization: Description of a new technique. J. Am. Coll. Cardio. 22:1105–1110, 1993.

    Google Scholar 

  12. Josephson, M. E., L. N. Horowitz, S. R. Spielman, H. L. Waxman, and A. M. Greenspan. Role of catheter mapping in the preoperative evaluation of ventricular tachycardia. Am. J. Cardiol. 49:207–220, 1982.

    Google Scholar 

  13. Khoury, D. S. Use of current density in the regularization of the inverse problem of electrocardiography. Proceedings of the 16th International Conference on IEEE Eng. Med. Biol., Baltimore, MD, 1994, pp. 133–134.

  14. Khoury, D. S., K. L. Berrier, S. M. Badruddin, and W. A. Zoghbi. Three-dimensional electrophysiologic imaging of the intact dog left ventricle using a noncontact multielectrode cavitary probe. Study of sinus, paced, and spontaneous premature beats. Circulation 97:399–409, 1998.

    Google Scholar 

  15. Khoury, D. S., and Y. Rudy. A model study of volume conductor effects on endocardial and intracavitary potentials. Circ. Res. 71:511–525, 1992.

    Google Scholar 

  16. Lardo, A. C., E. R. McVeigh, P. Jumrussirikul, R. D. Berger, H. Calkins, J. Lima, and H. R. Halperin. Visualization and temporal/spatial characterization of cardiac radiofrequency ablation lesions using magnetic resonance imaging. Circulation 102:698–705, 2000.

    Google Scholar 

  17. Packer, D. L., C. L. Stevens, M. G. Curley, C. J. Bruce, F. A. Miller, B. K. Khandheria, J. K. Oh, L. J. Sinak, and J. B. Seward. Intracardiac phased-array imaging: Methods and initial clinical experience with high resolution, under blood visualization: Initial experience with intracardiac phased-array ultrasound. J. Am. Coll. Cardiol. 39:509–516, 2002.

    Google Scholar 

  18. Punske, B. B., N. Quan, R. L. Lux, R. S. MacLeod, P. R. Ershler, T. J. Dustman, M. J. Allison, and B. Taccardi. Spatial methods of epicardial activation time determination in normal hearts. Ann. Biomed. Eng. 31:781–792, 2003.

    Google Scholar 

  19. Rao, L., H. Sun, and D. S. Khoury. Global comparisons between contact and noncontact mapping techniques in the right atrium: Role of cavitary probe size. Ann. Biomed. Eng. 29:493–500, 2001.

    Google Scholar 

  20. Ren, J. F., D. Schwartzman, D. J. Callans, S. E. Brode, C. D. Gottlieb, and F. E. Marchlinski. Intracardiac echocardiography (9 MHz) in humans: Methods, imaging views and clinical utility. Ultrasound Med. Biol. 25:1077–1086, 1999.

    Google Scholar 

  21. Roithinger, F. X., P. R. Steiner, Y. Goseki, K. S. Liese, D. B. Scholtz, A. Sippensgroenewegen, P. Ursell, and M. D. Lesh. Low-power radiofrequency application and intracardiac echocardiography for creation of continuous left atrial linear lesions. J. Cardiovasc. Electrophysiol. 10:680–691, 1999.

    Google Scholar 

  22. Schilling, R. J., N. S. Peters, and D. W. Davies. Simultaneous endocardial mapping in the human left ventricle using a noncontact catheter: Comparison of contact and reconstructed electrograms during sinus rhythm. Circulation 98:887–898, 1998.

    Google Scholar 

  23. Smeets, J. L. R. M., S. A. Ben-Haim, L. M. Rodriguez, C. Timmermans, and H. J. J. Wellens. New method for nonfluoroscopic endocardial mapping in humans: Accuracy assessment and first clinical results. Circulation 97:2426–2432, 1998.

    Google Scholar 

  24. Taccardi, B., G. Arisi, E. Macchi, S. Baruffi, and S. Spaggiari. A new intracavitary probe for detecting the site of origin of ectopic ventricular beats during one cardiac cycle. Circulation 75:272–281, 1987.

    Google Scholar 

  25. Tilg, B., G. Fischer, R. Modre, F. Hanser, B. Messnarz, M. Schocke, C. Kremser, T. Berger, F. Hintringer, and F. X. Roithinger. Model-based imaging of cardiac electrical excitation in humans. IEEE Trans. Med. Imag. 21:1031–1039, 2002.

    Google Scholar 

  26. Tikhonov, A. N., and V. Y. Arsenin. Solutions of Ill-Posed Problems. V. H. Winston & Sons: Washington, 1977, pp. 27–94.

    Google Scholar 

  27. Velipasaoglu, E. O., H. Sun, K. L. Berrier, and D. S. Khoury. Spatial regularization of the electrocardiographic inverse problem and its application to endocardial mapping. IEEE Trans. Biomed. Eng. 47:327–337, 2000.

    Google Scholar 

  28. Velipasaoglu, E. O., H. Sun, L. Rao, and D. S. Khoury. Role of geometry in the endocardial electrocardiographic inverse problem. Proceedings of World Cong. Med. Phys. Biomed. Eng. Chicago, IL, 2000, CD ROM.

  29. Wahl, M. R., J. Roman-Gonzalez, S. Asirvatham, S. B. Johnson, J. J. Camp, R. A. Robb, and D. L. Packer. Spatial fusion of ultrasound with computed tomographic imaging of the heart to facilitate 3D mapping. PACE 23:626, 2000 (Abstract).

    Google Scholar 

  30. Waldo, A. L., K. J. Vitikainen, and B. F. Hoffman. The sequence of retrograde atrial activation in the canine heart. Circ. Res. 37:156–163, 1975.

    Google Scholar 

  31. Wittkampf, F. H. M., E. F. D. Wever, R. Derksen, A. A. M. Wilde, H. Ramanna, R. N. W. Hauer, and E. O. Robles de Medlina. New technique for real-time 3-dimensional localization of regular intracardiac electrodes. Circulation 99:1312–1317, 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rao, L., He, R., Ding, C. et al. Novel Noncontact Catheter System for Endocardial Electrical and Anatomical Imaging. Annals of Biomedical Engineering 32, 573–584 (2004). https://doi.org/10.1023/B:ABME.0000019177.16890.61

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:ABME.0000019177.16890.61

Navigation