Skip to main content
Log in

Cell Membrane Fluidity Changes and Membrane Undulations Observed Using a Laser Scattering Technique

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Local transversal micromotions of cell membranes have been reported. These may provide the physical basis for changes in membrane fluidity. In this study, tissue scattering properties are used to measure the magnitude of transversal micromotions under varying stimuli. Laser light is directed at the cell surface at a low incident angle of 12° so that reflected or refracted light does not enter the microscope objective. Scattered light showed strong low-frequency intensity fluctuations with random-walk behavior. Fluctuations were quantified by the median coefficient of variation over the entire observed cell area. Incubation of the cells with protein crosslinkers (paraformaldehyde) and metabolic suppressors (sodium azide) suppressed these fluctuations by 62 and 44%, respectively. The application of hypoosmotic media caused an increase of fluctuation magnitude by 23% (p<0.005). Agents that increase membrane fluidity (2% ethanol and xenon) increased fluctuation magnitude by 15 and 31%, respectively (p<0.05). Cessation of the ethanol and xenon exposure led to partial recovery of the fluctuation magnitude, which was nonsignificant for ethanol. This study shows a strong link between membrane fluidity and transversal membrane undulations and provides an important step in the understanding of the mechanosensing function of the cell membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Bejanian, M., R. L. Alkana, K. von Hungen, C. F. Baxter, and P. J. Syapin. Temperature alters ethanol-induced fluidization of C57 mouse brain membranes. Alcohol 8:117–121, 1991.

    Google Scholar 

  2. Coletta, M., J. Hofrichter, F. A. Ferrone, and W. A. Eaton. Kinetics of sickle haemoglobin polymerization in single red cells. Nature 300:194–197, 1982.

    Google Scholar 

  3. Doolittle, A. K. Studies in Newtonian flow III. The dependence of the viscosity of liquids on molecule weight and free space (in homologous series). J. Appl. Phys. 23:236–239, 1952.

    Google Scholar 

  4. Fricke, K., and E. Sackmann. Variation of frequency spectrum of the erythrocyte flickering caused by aging, osmolarity, temperature and pathological changes. Biochim. Biophys. Acta 803:145–152, 1984.

    Google Scholar 

  5. Fricke, K., K. Wirthensohn, R. Laxhuber, and E. Sackmann. Flicker spectroscopy of erythrocytes. A sensitive method to study subtle changes of membrane bending stiffness. Eur. Biophys. J. 14:67–81, 1986.

    Google Scholar 

  6. Goldstein, D. B. The effects of drugs on membrane fluidity. Annu. Rev. Pharmacol. Toxicol. 24:43–64, 1984.

    Google Scholar 

  7. Gutierrez-Ruiz, M. C., J. L. Gomez, V. Souza, and L. Bucio. Chronic and acute ethanol treatment modifies fluidity and composition in plasma membranes of a human hepatic cell line (WRL-68). Cell Biol. Toxicol. 11:69–78, 1995.

    Google Scholar 

  8. Haidekker, M. A., N. L'Heureux, and J. A. Frangos. Fluid shear stress increases membrane fluidity in endothelial cells: A study with DCVJ fluorescence. Am. J. Physiol. Heart Circ. Physiol. 278:H1401–H1406, 2000.

    Google Scholar 

  9. Harris, R. A., and P. Bruno. Membrane disordering by anesthetic drugs: Relationship to synaptosomal sodium and calcium fluxes. J. Neurochem. 44:1274–1281, 1985.

    Google Scholar 

  10. Harris, R. A., and R. J. Hitzemann. Membrane fluidity and alcohol actions. Curr. Alcohol. 8:379–404, 1981.

    Google Scholar 

  11. Johnson, D. A., R. Cooke, and H. H. Loh. Involvement of lipids in the action of ethanol and other anesthetics. Adv. Exp. Med. Biol. 126:65–68, 1980.

    Google Scholar 

  12. Korolev, N. V., and S. V. Levin. On microcopic examination of living biological test-objects by means of dark field lighting. Cytology 5:588–591, 1963.

    Google Scholar 

  13. Krol, A. Y., M. G. Grinfeldt, S. V. Levin, and A. D. Smilgavichus. Local mechanical oscillations of the cell surface within the range 0.2–30 Hz. Eur. Biophys. J. 19:93–99, 1990.

    Google Scholar 

  14. Lee, D. G., Y. Park, P. I. Kim, H. G. Jeong, E. R. Woo, and K. S. Hahm. Influence on the plasma membrane of Candida albicans by HP (2–9)-magainin 2 (1–12) hybrid peptide. Biochem. Biophys. Res. Commun. 297:885–889, 2002.

    Google Scholar 

  15. Levin, S., and R. Korenstein. Membrane fluctuations in erythrocytes are linked to MgATP-dependent dynamic assembly of the membrane skeleton. Biophys. J. 60:733–737, 1991.

    Google Scholar 

  16. Mishal, Z., F. Tuy, C. Billard, and H. Tapiero. Effect of pH on fluorescence polarization of DMSO induced Friend leukemic cells. Cancer Biochem. Biophys. 5:147–152, 1981.

    Google Scholar 

  17. Mrak, R. E. Opposite effects of dimethyl sulfoxide and ethanol on synaptic membrane fluidity. Alcohol 9:513–517, 1992.

    Google Scholar 

  18. Nishio, I., J. Peetermans, and T. Tanaka. Microscope laser light scattering spectroscopy of single biological cells. Cell Biophys. 7:91–105, 1985.

    Google Scholar 

  19. Prangé, T., M. Schiltz, L. Pernot, N. Colloc'h, S. Longhi, W. Bourguet, and R. Fourme. Exploring hydrophobic sites in proteins with xenon or krypton. Proteins 30:61–73, 1998.

    Google Scholar 

  20. Puddey, I. B., R. R. Zilkens, K. D. Croft, and L. J. Beilin. Alcohol and endothelial function: A brief review. Clin. Exp. Pharmacol. Physiol. 28:1020–1024, 2001.

    Google Scholar 

  21. Roth, S. H. Membrane and cellular actions of anesthetic agents. Fed. Proc. 39:1595–1599, 1980.

    Google Scholar 

  22. Rottenberg, H. Probing the interactions of alcohols with biological membranes with the fluorescent probe Prodan. Biochemistry 31:9473–9481, 1992.

    Google Scholar 

  23. Rubin, E. Alcohol and the heart: Theoretical consideration. Fed. Proc. 41:2460–2464, 1982.

    Google Scholar 

  24. Smith, R. A., E. G. Porter, and K. W. Miller. The solubility of anesthetic gases in lipid bilayers. Biochim. Biophys. Acta 645:327–338, 1981.

    Google Scholar 

  25. Swann, A. C. Membrane effects of ethanol in excitable cells. Rev. Clin. Basic Pharm. 6:213–248, 1987.

    Google Scholar 

  26. Tishler, R. B., and F. D. Carlson. Quasi-elastic light scattering studies of membrane motion in single red blood cells. Biophys. J. 51:993–997, 1987.

    Google Scholar 

  27. Tishler, R. B., and F. D. Carlson. A study of the dynamic properties of the human red blood cell membrane using quasi-elastic light-scattering spectroscopy. Biophys. J. 65:2586–2600, 1993.

    Google Scholar 

  28. Tuvia, S., A. Almagor, A. Bitler, S. Levin, R. Korenstein, and S. Yedgar. Cell membrane fluctuations are regulated by medium macroviscosity: Evidence for a metabolic driving force. Proc. Natl. Acad. Sci. U.S.A. 94:5045–5049, 1997.

    Google Scholar 

  29. Widmer, J., Y. Raffin, J. M. Gaillard, and T. Tissot. In vitro effects of short-chain aliphatic alcohols, benzyl alcohol and chlorpromazine on the transport of precursors of monoamines across the human erythrocyte membrane. Neuropsychobiology 18:60–67, 1987.

    Google Scholar 

  30. Xu, Y., and P. Tang. Amphiphilic sites for general anesthetic action? Evidence from 129Xe-[1H] intermolecular nuclear Overhauser effects. Biochim. Biophys. Acta 1323:154–162, 1997.

    Google Scholar 

  31. Yamakura, T., and R. A. Harris. Effects of gaseous anesthetics nitrous oxide and xenon on ligand-gated ion channels. Comparison with isoflurane and ethanol. Anesthesiology 93:1095–1101, 2000.

    Google Scholar 

  32. Zeng, J., and L. G. Chong. Interactions between pressure and ethanol on the formation of interdigitated DPPC liposomes: A study with Prodan fluorescence. Biochemistry 30:9485–9491, 1991.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haidekker, M.A., Stevens, H.Y. & Frangos, J.A. Cell Membrane Fluidity Changes and Membrane Undulations Observed Using a Laser Scattering Technique. Annals of Biomedical Engineering 32, 531–536 (2004). https://doi.org/10.1023/B:ABME.0000019172.12700.b8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:ABME.0000019172.12700.b8

Navigation