Skip to main content

A Novel Injectable Approach for Cartilage Formation in Vivo Using PLG Microspheres

Abstract

This study documents the use of biodegradable poly(lactide-co-glycolide) (PLG) microspheres as a novel, injectable scaffold for cartilage tissue engineering. Chondrocytes were delivered via injection to the subcutaneous space of athymic mice in the presence and absence of PLG microspheres. Tissue formation was evaluated up to 8 weeks post-injection. Progressive cartilage formation was observed in samples containing microspheres. The presence of microspheres increased the quantity of tissue formed, the amount of glycosaminoglycan that accumulated, and the uniformity of type II collagen deposition. Microsphere composition influenced the growth of the tissue engineered cartilage. Higher molecular weight PLG resulted in a larger mass of cartilage formed and a higher content of proteoglycans. Microspheres comprised PLG with methyl ester end groups yielded increased tissue mass and matrix accumulation, but did not display homogenous matrix deposition. The microencapsulation of Mg(OH)2 had negative effects on tissue mass and matrix accumulation. Matrix accumulation, cell number, and tissue mass were unchanged by microsphere size, but larger microspheres increased the frequency of central necrosis in implants. The data herein reflect the promising utility of an injectable PLG-chondrocyte system for tissue engineering applications.

This is a preview of subscription content, access via your institution.

REFERENCES

  1. Chang, S. C., J. A. Rowley, G. Tobias, N. G. Genes, A. K. Roy, D. J. Mooney, C. A. Vacanti, and L. J. Bonassar. Injection molding of chondrocyte/alginate constructs in the shape of facial implants. J. Biomed. Mater. Res. 55:503-511, 2001.

    Google Scholar 

  2. Chu, C. C. The effect of pH on the in vitro degradation of poly(glycolide-lactide) copolymer absorbable sutures. J. Biomed. Mater. Res. 16:117-124, 1982.

    Google Scholar 

  3. Cleland, J. L., E. T. Duenas, A. Park, A. Daugherty, J. Kahn, J. Kowalski, and A. Cuthbertson. Development of poly-(D,L-lactide–coglycolide) microsphere formulations containing recombinant human vascular endothelial growth factor to promote local angiogenesis. J. Control. Release 72:13-24, 2001.

    Google Scholar 

  4. Elisseeff, J., W. McIntosh, K. Fu, B. T. Blunk, and R. Langer. Controlled-release of IGF-I and TGF-beta1 in a photopolymerizing hydrogel for cartilage tissue engineering. J. Orthop. Res. 19:1098-104, 2001.

    Google Scholar 

  5. Farndale, R. W., D. J. Buttle, and A. J. Barrett. Improved quantitation and discrimination of sulphated glycosaminoglycans by use of dimethylmethylene blue. Biochim. Biophys. Acta 883:173-177, 1986.

    Google Scholar 

  6. Freed, L. E., J. C. Marquis, A. Nohria, J. Emmanual, A. G. Mikos, and R. Langer. Neocartilage formation in vitro and in vivo using cells cultured on synthetic biodegradable polymers. J. Biomed. Mater. Res. 27:11-23, 1993.

    Google Scholar 

  7. Frondoza, C., A. Sohrabi, and D. Hungerford. Human chondrocytes proliferate and produce matrix components in microcarrier suspension culture. Biomaterials 17:879-888, 1996

    Google Scholar 

  8. Gooch, K. J., T. Blunk, D. L. Courter, A. L. Sieminski, P. M. Bursac, G. Vunjak-Novakovic, and L. E. Freed. IGF-I and mechanical environment interact to modulate engineered cartilage development. Biochem. Biophys. Res. Commun. 286:909-915, 2001

    Google Scholar 

  9. Gray, M. L., A. M., Pizzanelli, A. J. Grodzinsky, and R. C. Lee. Mechanical and physiochemical determinants of the chondrocyte biosynthetic response. J. Ortho. Res. 6:777-792, 1988.

    Google Scholar 

  10. Hu, Y., J. O. Hollingerm, and K. G. Marra. Controlled release from coated polymer microparticles embedded in tissue-engineered scaffolds. J. Drug Target. 9:431-438, 2001

    Google Scholar 

  11. Johnson, O. L., J. L. Cleland, H. J. Lee, M. Charnis, E. Duenas, W. Jaworowicz, D. Shepard, A. Shahzamani, A. J. Jones, and S. D. Putney. A month-long effect from a single injection of microencapsulated human growth hormone. Nat. Med. 2:795-799, 1996.

    Google Scholar 

  12. Klagsbrun, M. Large-scale preparation of chondrocytes. Methods Enzymol. 58:560-564, 1979.

    Google Scholar 

  13. Kojima, K., L. J. Bonasar, A. K. Roy, H. Mizuno, J. Cortiella, and C. A. Vacanti. A composite tissue-engineered trachea using sheep nasal chondrocyte and epithelial cells. FASEB J. 17:823-828, 2003.

    Google Scholar 

  14. Krewson, C. E., R. Dause, M. Mak, and W. M. Saltzman Stabilization of nerve growth factor in controlled release polymers and in tissue. J. Biomater. Sci. Polym. Ed. 8:103-117, 1996.

    Google Scholar 

  15. Madry, H., D. Zurakowski, and S. B. Trippel. Overexpression of human insulin-like growth factor-I promotes new tissue formation in an ex vivo model of articular chondrocyte transplantation. Gen. Ther. 8:1443-1449, 2001.

    Google Scholar 

  16. Mercier, N. R., H. R. Costantino, M. A. Tracy, and L. J. Bonassar. Cartilage Tissue Formation Using PLG Microspheres. Trans. Ortho. Res. Soc. 27:470, 2001.

    Google Scholar 

  17. Mooney, D. J., D. F. Baldwin, N. P. Suh, J. P. Vacanti, and R. Langer. Novel approach to fabricate porous sponges of poly(D,L-lactic-co-glycolic acid) without the use of organic solvents. Biomaterials 17:1417-1422, 1996.

    Google Scholar 

  18. Moran, J. M., D. Pazzano, and L. J. Bonassar. Characterization of polylactic Acid-polyglycolic Acid composites for cartilage tissue engineering. Tissue Eng. 9:63-70, 2003.

    Google Scholar 

  19. Nixon, A. J., L. A. Fortier, J. Williams, and H. Mohammed. Enhanced repair of extensive articular defects by insulin-like growth factor-I-laden fibrin composites. J. Orthop. Res. 17:475-487, 1999.

    Google Scholar 

  20. Pazzano, D., K. A. Mercier, J. M. Moran, S. S. Fong, D. D. DiBiaso, J. X. Rulfs, S. S. Kohles, and L. J. Bonassar. Comparison of chondrogenesis in static and perfused bioreactor culture. Biotechnol. Prog. 16:893-896, 2000.

    Google Scholar 

  21. Torok, E., J. M. Pollok, P. X. Ma, P. M. Kaufmann, M. Dandri, J. Petersen, M. R. Burda, D. Kluth, F. Perner, and X. Rogiers. Optimization of hepatocyte spheroid formation for hepatic tissue engineering on three-dimensional biodegradable polymer within a flow bioreactor prior to implantation. Cells Tissues Organs. 169:34-41, 2001.

    Google Scholar 

  22. Tracy, M. A., K. L. Ward, L. Firouzabadian, Y. Wang, N. Dong, R. Qian, and Y. Zhang. Factors affecting the degradation rate of poly(lactide-co-glycolide) microspheres in vivo and in vitro. Biomaterials 20:1057-1062, 1999.

    Google Scholar 

  23. VanWezel, A. I. Growth of cell-strains and primary cells on micro-carriers in homogeneous culture. Nature 216:64-65, 1967.

    Google Scholar 

  24. Wilson, C. G., L. J. Bonassar, and S. S. Kohles. Modeling the dynamic composition of engineered cartilage. Arch. Biochem. Biophys. 408:246-254, 2002

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mercier, N.R., Costantino, H.R., Tracy, M.A. et al. A Novel Injectable Approach for Cartilage Formation in Vivo Using PLG Microspheres. Annals of Biomedical Engineering 32, 418–429 (2004). https://doi.org/10.1023/B:ABME.0000017547.84146.fd

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:ABME.0000017547.84146.fd

  • Cartilage
  • Tissue engineering
  • PLG
  • Proteoglycan
  • Microsphere
  • Cell delivery